scholarly journals Identification of Fuzzy Inference Systems by Means of a Multiobjective Opposition-Based Space Search Algorithm

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Wei Huang ◽  
Sung-Kwun Oh

We introduce a new category of fuzzy inference systems with the aid of a multiobjective opposition-based space search algorithm (MOSSA). The proposed MOSSA is essentially a multiobjective space search algorithm improved by using an opposition-based learning that employs a so-called opposite numbers mechanism to speed up the convergence of the optimization algorithm. In the identification of fuzzy inference system, the MOSSA is exploited to carry out the parametric identification of the fuzzy model as well as to realize its structural identification. Experimental results demonstrate the effectiveness of the proposed fuzzy models.

2020 ◽  
Vol 15 (4) ◽  
pp. 1389-1417
Author(s):  
Ricardo Felicio Souza ◽  
Peter Wanke ◽  
Henrique Correa

Purpose This study aims to analyze the performance of four different fuzzy inference system-based forecasting tools using a real case company. Design/methodology/approach The forecasting tools were tested using 27 products of the nail polish line of a multinational beauty company and the performance of said tools was compared to those of the company’s previous forecasting methods that were basically qualitative (informal and intuition-based). Findings The performance of the methods analyzed was compared by using mean absolute percentage error. It was possible to determine the characteristics and conditions that make each model the best for each situation. The main takeaways were that low kurtosis, negatively skewed demand time-series and longer horizon forecasts that favor the fuzzy inference system-based models. Besides, the results suggest that the fuzzy forecasting tools should be preferred for longer horizon forecasts over informal qualitative methods. Originality/value Notwithstanding the proposed hybrid modeling approach based on fuzzy inference systems, our research offers a relevant contribution to theory and practice by shedding light on the segmentation and selection of forecasting models, both in terms of time-series characteristics and forecasting horizon. The proposed fuzzy inference systems showed to be particularly useful not only when time-series distributions present no clear central tendency (that is, they are platykurtic or dispersed around a large plateau around the median, which is the characteristic of negative kurtosis), but also when mode values are greater than median values, which in turn are greater than mean values. This large tail to the left (negative skewness) is typical of successful products whose sales are ramping up in early stages of their life cycle. For these, fuzzy inference systems may help managers screen out forecast bias and, therefore, lower forecast errors. This behavior also occurs when managers deal with forecasts of longer horizons. The results suggest that further research on fuzzy inference systems hybrid approaches for forecasting should emphasize short-term forecasting by trying to better capture the “tribal” managerial knowledge instead of focusing on less dispersed and slower moving products, where the purely qualitative forecasting methods used by managers tend to perform better in terms of their accuracy.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Hiram Ponce ◽  
Pedro Ponce ◽  
Arturo Molina

This paper presents a novel fuzzy inference model based on artificial hydrocarbon networks, a computational algorithm for modeling problems based on chemical hydrocarbon compounds. In particular, the proposed fuzzy-molecular inference model (FIM-model) uses molecular units of information to partition the output space in the defuzzification step. Moreover, these molecules are linguistic units that can be partially understandable due to the organized structure of the topology and metadata parameters involved in artificial hydrocarbon networks. In addition, a position controller for a direct current (DC) motor was implemented using the proposed FIM-model in type-1 and type-2 fuzzy inference systems. Experimental results demonstrate that the fuzzy-molecular inference model can be applied as an alternative of type-2 Mamdani’s fuzzy control systems because the set of molecular units can deal with dynamic uncertainties mostly present in real-world control applications.


2011 ◽  
Vol 332-334 ◽  
pp. 1505-1510
Author(s):  
Xiao Bo Yang

In this paper, a new method of subtractive clustering adaptive network fuzzy inference systems is proposed to assess degree of wrinkle in the fabric. The clustering center can be gotten through subtractive clustering algorithm, which is the base to set up adaptive network inference systems. Firstly, subtractive clustering algorithm is used to confirm the structure of fuzzy neural network, then, fuzzy inference system is used to process pattern recognition. Finally, four kinds of fabric wrinkle feature parameters are used to verify the results on real fabric. The results show the applicability of the proposed method to real data.


2011 ◽  
Vol 20 (03) ◽  
pp. 375-400 ◽  
Author(s):  
INÉS DEL CAMPO ◽  
JAVIER ECHANOBE ◽  
KOLDO BASTERRETXEA ◽  
GUILLERMO BOSQUE

This paper presents a scalable architecture suitable for the implementation of high-speed fuzzy inference systems on reconfigurable hardware. The main features of the proposed architecture, based on the Takagi–Sugeno inference model, are scalability, high performance, and flexibility. A scalable fuzzy inference system (FIS) must be efficient and practical when applied to complex situations, such as multidimensional problems with a large number of membership functions and a large rule base. Several current application areas of fuzzy computation require such enhanced capabilities to deal with real-time problems (e.g., robotics, automotive control, etc.). Scalability and high performance of the proposed solution have been achieved by exploiting the inherent parallelism of the inference model, while flexibility has been obtained by applying hardware/software codesign techniques to reconfigurable hardware. Last generation reconfigurable technologies, particularly field programmable gate arrays (FPGAs), make it possible to implement the whole embedded FIS (e.g., processor core, memory blocks, peripherals, and specific hardware for fuzzy inference) on a single chip with the consequent savings in size, cost, and power consumption. As a prototyping example, we implemented a complex fuzzy controller for a vehicle semi-active suspension system composed of four three-input FIS on a single FPGA of the Xilinx's Virtex 5 device family.


2020 ◽  
Vol 39 (5) ◽  
pp. 7203-7215
Author(s):  
Emanuel Ontiveros-Robles ◽  
Oscar Castillo ◽  
Patricia Melin

In recent years, successful applications of singleton fuzzy inference systems have been made in a plethora of different kinds of problems, for example in the areas of control, digital image processing, time series prediction, fault detection and classification. However, there exists another relatively less explored approach, which is the use of non-singleton fuzzy inference systems. This approach offers an interesting way for handling uncertainty in complex problems by considering inputs with uncertainty, while the conventional Fuzzy Systems have their inputs with crisp values (singleton systems). Non-singleton systems have as inputs Type-1 membership functions, and this difference increases the complexity of the fuzzification, but provides the systems with additional non-linearities and robustness. The main limitations of using a non-singleton fuzzy inference system is that it requires an additional computational overhead and are usually more difficult to apply in some problems. Based on these limitations, we propose in this work an approach for efficiently processing non-singleton fuzzy systems. To verify the advantages of the proposed approach we consider the case of general type-2 fuzzy systems with non-singleton inputs and their application in the classification area. The main contribution of the paper is the implementation of non-singleton General Type-2 Fuzzy Inference Systems for the classification task, aiming at analyzing its potential advantage in classification problems. In the present paper we propose that the use of non-singleton inputs in Type-2 Fuzzy Classifiers can improve the classification rate and based on the realized experiments we can observe that General Type-2 Fuzzy Classifiers, but with non-singleton fuzzification, obtain better results in comparison with respect to their singleton counterparts.


Author(s):  
Ivan N. Silva ◽  
Rogerio A. Flauzino

The design of fuzzy inference systems comes along with several decisions taken by the designers since is necessary to determine, in a coherent way, the number of membership functions for the inputs and outputs, and also the specification of the fuzzy rules set of the system, besides defining the strategies of rules aggregation and defuzzification of output sets. The need to develop systematic procedures to assist the designers has been wide because the trial and error technique is the unique often available (Figueiredo & Gomide, 1997). In general terms, for applications involving system identification and fuzzy modeling, it is convenient to use energy functions that express the error between the desired results and those provided by the fuzzy system. An example is the use of the mean squared error or normalized mean squared error as energy functions. In the context of systems identification, besides the mean squared error, data regularization indicators can be added to the energy function in order to improve the system response in presence of noises (from training data) (Guillaume, 2001). In the absence of a tuning set, such as happens in parameters adjustment of a process controller, the energy function can be defined by functions that consider the desired requirements of a particular design (Wan, Hirasawa, Hu & Murata, 2001), i.e., maximum overshoot signal, setting time, rise time, undamped natural frequency, etc. From this point of view, this article presents a new methodology based on error backpropagation for the adjustment of fuzzy inference systems, which can be then designed as a three layers model. Each one of these layers represents the tasks performed by the fuzzy inference system such as fuzzification, fuzzy rules inference and defuzzification. The adjustment procedure proposed in this article is performed through the adaptation of its free parameters, from each one of these layers, in order to minimize the energy function previously specified. In principle, the adjustment can be made layer by layer separately. The operational differences associated with each layer, where the parameters adjustment of a layer does not influence the performance of other, allow single adjustment of each layer. Thus, the routine of fuzzy inference system tuning acquires a larger flexibility when compared to the training process used in artificial neural networks. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, such methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno.


Author(s):  
HAI-JUN RONG ◽  
GUANG-BIN HUANG ◽  
YONG-QI LIANG

Recently an Online Sequential Fuzzy Extreme Learning (OS-Fuzzy-ELM) algorithm has been developed by Rong et al. for the RBF-like fuzzy neural systems where a fuzzy inference system is equivalent to a RBF network under some conditions. In the paper the learning ability of the batch version of OS-Fuzzy-ELM, called as Fuzzy-ELM is further evaluated to train a class of fuzzy inference systems which can not be represented by the RBF networks. The equivalence between the output of the fuzzy system and that of a generalized Single-Hidden Layer Feedforward Network as presented in Huang et al. is shown first, which is then used to prove the validity of the Fuzzy-ELM algorithm. In Fuzzy-ELM, the parameters of the fuzzy membership functions are randomly assigned and then the corresponding consequent parameters are determined analytically. Besides an input variable selection method based on the correlation measure is proposed to select the relevant inputs as the inputs of the fuzzy system. This can avoid the exponential increase of number of fuzzy rules with the increase of dimension of input variables while maintaining the testing performance and reducing the computation burden. Performance comparison of Fuzzy-ELM with other existing algorithms is presented using some real-world regression benchmark problems. The results show that the proposed Fuzzy-ELM produces similar or better accuracies with a significantly lower training time.


2012 ◽  
Vol 10 (1) ◽  
pp. 194-204
Author(s):  
Marius Pislaru ◽  
Silvia Curteanu ◽  
Maria Cazacu

AbstractA fuzzy model was designed to predict changes in surface tension and maximum absorbance due to self-assembly in a DMF solution of poly{1,1′-ferrocene-diamide-[1,3-bis(propylene) tetramethyl-disiloxane} as a function of temperature and concentration. The building of fuzzy rule-based inference systems appears as a grey-box because it allows interpretation of the knowledge contained in the model as well as its improvement with a-priori knowledge. The method provides accurate results and increases the efficiency of utilizing the available information in the model. Small mean squared errors (0.0064 for absorbance and 0.79 for surface tension) and strong correlations between experiment and simulated results (0.93 and 0.97, respectively) were found during model validation. The results showed that it is feasible to apply a Mamdani fuzzy inference system to the estimation of optical and surface properties of a ferrocenylsiloxane polyamide solution.


Author(s):  
Halim Mudia

The level and flow control in tanks are the heart of all chemical engineering system. The control of liquid level in tanks and flow between tanks is a basic problem in the process industries. Many times the liquids will be processed by chemical or mixing treatment in the tanks, but always the level of fluid in the tanks must be controlled and the flow between tanks must be regulated in presence of non-linearity. Threfore, in this paper will use fuzzy inference systems to control of  level 2 are developed using Mamdani-type and Sugeno-type fuzzy models. The outcome obtained by two fuzzy inference systems is evaluated. This paper summarizes the essential variation among the Mamdani-type and Sugeno-type fuzzy inference systems with setpoint of level is 10 centimeter. Matlab fuzzy logic toolbox is used for the simulation of both the models. This also confirms which one is a superior choice of the two fuzzy inference systems to control of level 2 in tank 2. The results show madani-type fuzzy inference system is superior as compared to sugeno-type fuzzy inference system.


Sign in / Sign up

Export Citation Format

Share Document