scholarly journals Effect of ZnO on the Thermal Properties of Tellurite Glass

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
H. A. A. Sidek ◽  
S. Rosmawati ◽  
B. Z. Azmi ◽  
A. H. Shaari

Systematic series of binary zinc tellurite glasses in the form(ZnO)x(TeO2)(wherex=0to 0.4 with an interval of 0.05 mole fraction) have been successfully prepared via conventional melt cast-quenching technique. Their density was determined by Archimedes method with acetone as buoyant liquid. The thermal expansion coefficient of each zinc tellurite glasses was measured using L75D1250 dilatometer, while their glass transition temperature (Tg) was determined by the SETARAM Labsys DTA/6 differential thermogravimetric analysis at a heating rate of 20 K min−1. The acoustic Debye temperature and the softening temperature (Ts) were estimated based on the longitudinal (VL) and shear ultrasonic (Vs) wave velocities propagated in each glass sample. For ultrasonic velocity measurement of the glass sample, MATEC MBS 8000 Ultrasonic Data Acquisition System was used. All measurements were taken at 10 MHz frequency and at room temperature. All the thermal properties of such binary tellurite glasses were measured as a function of ZnO composition. The composition dependence was discussed in terms of ZnO modifiers that were expected to change the thermal properties of tellurite glasses. Experimental results show their density, and the thermal expansion coefficient increases as more ZnO content is added to the tellurite glass network, while their glass transition, Debye temperature, and the softening temperature decrease due to a change in the coordination number (CN) of the network forming atoms and the destruction of the network structure brought about by the formation of some nonbridging oxygen (NBO) atoms.

2012 ◽  
Vol 512-515 ◽  
pp. 469-473 ◽  
Author(s):  
L. Liu ◽  
Z. Ma ◽  
F.C. Wang ◽  
Q. Xu

According to the theory of phonon transport and thermal expansion, a new complex rare-earth zirconate ceramic (La0.4Sm0.5Yb0.1)2Zr2O7, with low thermal conductivity and high thermal expansion coefficient, has been designed by doping proper ions at A sites. The complex rare-earth zirconate (La0.4Sm0.5Yb0.1)2Zr2O7 powder for thermal barrier coatings (TBCs) was synthesized by coprecipitation-calcination method. The phase, microstructure and thermal properties of the new material were investigated. The results revealed that single phase (La0.4Sm0.5Yb0.1)2Zr2O7 with pyrochlore structure was synthesized. The thermal conductivity and the thermal expansion coefficient of the designed complex rare-earth zirconate ceramic is about 1.3W/m•K and 10.5×10-6/K, respectively. These results imply that (La0.4Sm0.5Yb0.1)2Zr2O7 can be explored as the candidate material for the ceramic layer in TBCs system.


1985 ◽  
Vol 38 (4) ◽  
pp. 617 ◽  
Author(s):  
JG Collins ◽  
SJ Collocott ◽  
GK White

The linear thermal expansion coefficient a from 2 to 100 K and heat capacity per gram cp from 0�3 to 30 K are reported for fully-stabilized zirconia containing a nominal 16 wt.% (9 mol.%) of yttria. The heat capacity below 7 K has been analysed into a linear (tunnelling?) term, a Schottky term centred at 1�2 K, a Debye term (e~ = 540 K), and a small T5 contribution. The expansion coefficient is roughly proportional to T from 5 to 20 K and gives a limiting lattice Griineisen parameter 'Yo ::::: 5, which agrees with that calculated from elastic data.


1958 ◽  
Vol 25 (4) ◽  
pp. 525-528
Author(s):  
H. Tramposch ◽  
G. Gerard

Abstract The optical and physical properties of Paraplex P43, Castolite, and epoxy resin Hysol 6000-OP, which are potentially of interest in photothermoelastic investigations, were investigated over a temperature range from +100 to −60 F. Results on the thermal-expansion coefficient, the material fringe value, and the modulus of elasticity as functions of temperature are presented. Also evaluated were thermal properties of importance in heat conduction. Photothermoelastic figures of merit, which rate the optical sensitivity of materials in photothermoelastic applications, as well as a new method to determine this figure in a relative manner are presented.


2018 ◽  
Vol 60 (5) ◽  
pp. 964
Author(s):  
Zhiqin Wen ◽  
Yuhong Zhao ◽  
Hua Hou ◽  
Liwen Chen

AbstractFirst-principles calculations are performed to investigate lattice parameters, elastic constants and 3D directional Young’s modulus E of nickel silicides (i.e., β-Ni_3Si, δ-Ni_2Si, θ-Ni_2Si, ε-NiSi, and θ-Ni_2Si), and thermodynamic properties, such as the Debye temperature, heat capacity, volumetric thermal expansion coefficient, at finite temperature are also explored in combination with the quasi-harmonic Debye model. The calculated results are in a good agreement with available experimental and theoretical values. The five compounds demonstrate elastic anisotropy. The dependence on the direction of stiffness is the greatest for δ-Ni_2Si and θ-Ni_2Si, when the stress is applied, while that for β-Ni_3Si is minimal. The bulk modulus B reduces with increasing temperature, implying that the resistance to volume deformation will weaken with temperature, and the capacity gradually descend for the compound sequence of β-Ni_3Si > δ-Ni_2Si > θ-Ni_2Si > ε-NiSi > θ-Ni_2Si. The temperature dependence of the Debye temperature ΘD is related to the change of lattice parameters, and ΘD gradually decreases for the compound sequence of ε-NiSi > β-Ni_3Si > δ-Ni_2Si > θ-Ni_2Si > θ-Ni_2Si. The volumetric thermal expansion coefficient αV, isochoric heat capacity and isobaric heat capacity C _ p of nickel silicides are proportional to T ^3 at low temperature, subsequently, αV and C _ p show modest linear change at high temperature, whereas C _v obeys the Dulong-Petit limit. In addition, β-Ni_3Si has the largest capability to store or release heat at high temperature. From the perspective of solid state physics, the thermodynamic properties at finite temperature can be used to guide further experimental works and design of novel nickel–silicon alloys.


Sign in / Sign up

Export Citation Format

Share Document