1.2.1.2.10 Thermomagnetic properties, thermal expansion coefficient, specific heat, Debye temperature, thermal conductivity

Author(s):  
D. Bonnenberg ◽  
K. A. Hempel ◽  
H.P.J. Wijn
1998 ◽  
Vol 12 (02) ◽  
pp. 191-205 ◽  
Author(s):  
Vu Van Hung ◽  
Nguyen Thanh Hai

By the moment method established previously on the basis of the statistical mechanics, the thermodynamic properties of a strongly anharmonic face-centered and body-centered cubic crystal with point defect are considered. The thermal expansion coefficient, the specific heat Cv and Cp, the isothermal and adiabatic compressibility, etc. are calculated. Our calculated results of the thermal expansion coefficient, the specific heat Cv and Cp… of W, Nb, Au and Ag metals at various temperatures agrees well with the measured values. The anharmonic effects in extended X-ray absorption fine structure (EXAFS) in the single-shell model are considered. We have obtained a new formula for anharmonic contribution to the mean square relative displacement. The anharmonicity is proportional to the temperature and enters the phase change of EXAFS. Our calculated results of Debye–Waller factor and phase change in EXAFS of Cu at various temperatures agrees well with the measured values.


2012 ◽  
Vol 512-515 ◽  
pp. 469-473 ◽  
Author(s):  
L. Liu ◽  
Z. Ma ◽  
F.C. Wang ◽  
Q. Xu

According to the theory of phonon transport and thermal expansion, a new complex rare-earth zirconate ceramic (La0.4Sm0.5Yb0.1)2Zr2O7, with low thermal conductivity and high thermal expansion coefficient, has been designed by doping proper ions at A sites. The complex rare-earth zirconate (La0.4Sm0.5Yb0.1)2Zr2O7 powder for thermal barrier coatings (TBCs) was synthesized by coprecipitation-calcination method. The phase, microstructure and thermal properties of the new material were investigated. The results revealed that single phase (La0.4Sm0.5Yb0.1)2Zr2O7 with pyrochlore structure was synthesized. The thermal conductivity and the thermal expansion coefficient of the designed complex rare-earth zirconate ceramic is about 1.3W/m•K and 10.5×10-6/K, respectively. These results imply that (La0.4Sm0.5Yb0.1)2Zr2O7 can be explored as the candidate material for the ceramic layer in TBCs system.


2013 ◽  
Vol 752 ◽  
pp. 48-56
Author(s):  
Andrea Simon ◽  
Károly Kovács ◽  
C. Hakan Gür ◽  
Tadeusz Pieczonka ◽  
Zoltán Gácsi

Composites are special material which can provide individual properties such as high strength with low density or good thermal conductivity with low thermal expansion coefficient. Composites conform to the constantly evolving and more complex expectations. In order to make a product with good quality, it is important to choose suitable materials and technology. In this research powder metallurgy (PM), as one of the most common composite manufacturing technology, was examined -which factors and mechanisms influence mostly the properties of the product. Ishikawa method was used to reveal these correlations.


Author(s):  
Jianhua Yu ◽  
Huayu Zhao ◽  
Shunyan Tao ◽  
Xiaming Zhou ◽  
Chuanxian Ding

Plasma-sprayed thermal barrier coating (TBC) systems are widely used in gas turbine blades to increase turbine entry temperature (TET) and better efficiency. Yttria stabilized zirconia (YSZ) has been the conventional thermal barrier coating material because of its low thermal conductivity, relative high thermal expansion coefficient and good corrosion resistance. However the YSZ coatings can hardly fulfill the harsh requirements in future for higher reliability and the lower thermal conductivity at higher temperatures. Among the interesting TBC candidates, materials with pyrochlore structure show promising thermo-physical properties for use at temperatures exceeding 1200 °C. Sm2Zr2O7 bulk material does not only have high temperature stability, sintering resistance but also lower thermal conductivity and higher thermal expansion coefficient. The sintering characteristics of ceramic thermal barrier coatings under high temperature conditions are complex phenomena. In this paper, samarium zirconate (Sm2Zr2O7, SZ) powder and coatings were prepared by solid state reaction and atmosphere plasma spraying process, respectively. The microstructure development of coatings derived from sintering after heat-treated at 1200–1500 °C for 50 h have been investigated. The microstructure was examined by scanning electron microscopy (SEM) and the grain growth was analyzed in this paper as well.


1985 ◽  
Vol 130 (1) ◽  
pp. K11-K14 ◽  
Author(s):  
T. Soma ◽  
S. Nehashi ◽  
H.-Matsuo Kagaya

2012 ◽  
Vol 490-495 ◽  
pp. 3266-3271
Author(s):  
Yan Xia Li ◽  
Jun You Liu ◽  
Guo Quan Liu ◽  
Wen Shao Wang

50vol. %Si/Al composite was prepared by the separation of liquid and solid in semi-solid. The microstructures of composite were obtained using OM, SEM and EMPA. The primary Si particles distribute uniformly on the Al matrix which surrounds the Si particles and makes-up a continuous network. The thermal expansion coefficient and thermal conductivity of composites experienced different thermal process were examined. It shows that the thermal process history has a significant effect on the microstructure and properties. The residual stress and size of Si particles varied during thermal processing which were responsible for the thermal expansion coefficient alternation. The thermal process of high temperature insostatic pressing reduces the porosity in composite and improves thermal conductivity obviously


2021 ◽  
Vol 21 (9) ◽  
pp. 4964-4967
Author(s):  
Bok-Hyun Oh ◽  
Choong-Hwan Jung ◽  
Heon Kong ◽  
Sang-Jin Lee

A Cu metal-ceramic filter composite with high thermal conductivity and a suitable thermal expansion coefficient was designed to be applied to high performance heat dissipation materials. The purpose of using the ceramic filler was to decrease the high coefficient of thermal expansion of Cu matrix utilizing the high thermal conductivity of Cu. In this study, a SiC ceramic filler powder was added to the Cu sol including Zn as a liquid phase sintering agent. The final complex was produced by applying a PVB polymer to prepare a homogeneous precursor followed by sintering in a reducing atmosphere. The pressureless sintered composite showed lower thermal conductivity than pure bulk Cu due to the some residual pores. In the case of the Cu–SiC composite in which 10 wt% of SiC filler was added, it showed a thermal conductivity of 100 W/m·°C and a thermal expansion coefficient of 13.3×10−6/°C. The thermal conductivity showed some difference from the theoretical calculated value due to the pores in the composite, but the thermal expansion coefficient did not show a significant difference.


Sign in / Sign up

Export Citation Format

Share Document