scholarly journals Effects of Bone Young’s Modulus on Finite Element Analysis in the Lateral Ankle Biomechanics

2013 ◽  
Vol 10 (4) ◽  
pp. 189-195 ◽  
Author(s):  
W. X. Niu ◽  
L. J. Wang ◽  
T. N. Feng ◽  
C. H. Jiang ◽  
Y. B. Fan ◽  
...  

Finite element analysis (FEA) is a powerful tool in biomechanics. The mechanical properties of biological tissue used in FEA modeling are mainly from experimental data, which vary greatly and are sometimes uncertain. The purpose of this study was to research how Young’s modulus affects the computations of a foot-ankle FEA model. A computer simulation and an in-vitro experiment were carried out to investigate the effects of incremental Young’s modulus of bone on the stress and strain outcomes in the computational simulation. A precise 3-dimensional finite element model was constructed based on an in-vitro specimen of human foot and ankle. Young’s moduli were assigned as four levels of 7.3, 14.6, 21.9 and 29.2 GPa respectively. The proximal tibia and fibula were completely limited to six degrees of freedom, and the ankle was loaded to inversion 10° and 20° through the calcaneus. Six cadaveric foot-ankle specimens were loaded as same as the finite element model, and strain was measured at two positions of the distal fibula. The bone stress was less affected by assignment of Young’s modulus. With increasing of Young’s modulus, the bone strain decreased linearly. Young’s modulus of 29.2 GPa was advisable to get the satisfactory surface strain results. In the future study, more ideal model should be constructed to represent the nonlinearity, anisotropy and inhomogeneity, as the same time to provide reasonable outputs of the interested parameters.

2006 ◽  
Vol 321-323 ◽  
pp. 278-281
Author(s):  
Wen Quan Cui ◽  
Ye Yeon Won ◽  
Myong Hyun Baek ◽  
Kwang Kyun Kim

The purpose of this study was to investigate the contribution of the microstructural properties of trabecular bone in predicting its elastic modulus in the intertrochanteric region. A total of 15 trabecular bone core specimens were obtained from the proximal femurs of patients undergoing total hip arthroplasty. The micro-computed tomography (micro-CT) was used to scan each specimen to obtain micro-morphology. Microstructural parameters were directly calculated using software. Micro-CT images were converted to micro-finite element model using meshing technique, and then micro-finite element analysis (FEA) was performed to assess the mechanical property (Young’s modulus) of trabecular bone. The results showed that the ability to explain this variance of Young’s modulus is improved by combining the structural indices with each other. It suggested that assessment of bone microarchitecture should be added as regards detection of osteoporosis and evaluation of the efficacy of drug treatments for osteoporosis.


Author(s):  
Luiz T. Souza ◽  
David W. Murray

The paper presents results for finite element analysis of full-sized girth-welded specimens of line pipe and compares these results with the behavior exhibited by test specimens subjected to constant axial force, internal pressure and monotonically increasing curvatures. Recommendations for the ‘best’ type of analytical finite element model are given. Comparisons between the behavior predicted analytically and the observed behavior of the experimental test specimens are made. The mechanism of wrinkling is explained and the evolution of the deformed configurations for different wrinkling modes is examined. It is concluded that the analytical tools now available are sufficiently reliable to predict the behavior of pipe in a manner that was not previously possible and that this should create a new era for the design and assessment of pipelines if the technology is properly exploited by industry.


2013 ◽  
Vol 774-776 ◽  
pp. 25-29
Author(s):  
Cong Fang Hu ◽  
Yuan Qiang Tan

Based on the tandem sealing structure at the end of the shaft,a finite element model of rubber O-rings has been established and the sealing performance of rubber O-ring has been analyzed. There is an un-uniform compression among these O-rings which lead to the sealing failure. Under different friction factors, several groups of the rubber O-rings have been analyzed, finding that the friction factor is the reason of un-uniform compression. The effect of different average compression rate has been investigated, which has been integrated in the sealing criteria for the tandem O-rings, providing a reference for the optimization of tandem sealing structure at the end of the shaft. According to the sealing criteria for a single O-ring, the sealing criteria for the tandem O-rings is built.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Chunlai Tian ◽  
Pengfei Duan

Composite has been widely used in various fields due to its advanced performance. To reveal the relation between the mechanical properties of the composite and that of each individual component, finite element analysis (FEA) has usually been adopted. In this study, in order to predict the mechanical properties of hard coating on a soft polymer, the response of this coating system during nanoindentation was modelled. Various models, such as a viscoelastic model and fitting model, were adopted to analyse the indentation response of this coating system. By varying the substrate properties (i.e., Young’s modulus, viscoelasticity, and Poisson’s ratio), Young’s modulus, energy loss, and the viscoelastic model of the coating system were analysed, and how the mechanical properties of the substrate will affect the indentation response of the coating system was discussed.


2014 ◽  
Vol 945-949 ◽  
pp. 1143-1149
Author(s):  
Hai Xia Sun ◽  
Hua Kai Wei ◽  
Xiao Fang Zhao ◽  
Jia Rui Qi

The finite element model of the concrete mixing truck’s frame is builded by using shell as basic element, and the process of building the finite element model of the balance suspension is introduced in detail. Based on this, frame’s stress on five types of typical operating conditions are calculated by using the finite element analysis software, NASTRAN, and results can show the dangerous position and the maximum stress position on the frame. The analysis result on structural strength can provide the basis for further improving the frame structure.


2013 ◽  
Vol 284-287 ◽  
pp. 1831-1835
Author(s):  
Wei Hsin Gau ◽  
Kun Nan Chen ◽  
Yunn Lin Hwang

In this paper, two experimental techniques, Electronic Speckle Pattern Interferometry and Stroboscopic Interferometry, and two different finite element analysis packages are used to measure or to analyze the frequencies and mode shapes of a micromachined, cross-shaped torsion structure. Four sets of modal data are compared and shown having a significant discrepancy in their frequency values, although their mode shapes are quite consistent. Inconsistency in the frequency results due to erroneous inputs of geometrical and material parameters to the finite element analysis can be salvaged by applying the finite element model updating procedure. Two updating cases show that the optimization sequences converge quickly and significant improvements in frequency prediction are achieved. With the inclusion of the thickness parameter, the second case yields a maximum of under 0.4% in frequency difference, and all parameters attain more reliable updated values.


Sign in / Sign up

Export Citation Format

Share Document