scholarly journals Estimation of Young's Modulus for Polysilicon Thin Film by Finite Element Analysis

2005 ◽  
Vol 54 (10) ◽  
pp. 1016-1021 ◽  
Author(s):  
Kazuto TANAKA ◽  
Kohji MINOSHIMA ◽  
Takehiro IMOTO
2006 ◽  
Vol 326-328 ◽  
pp. 219-222 ◽  
Author(s):  
Dong Cheon Baek ◽  
Soon Bok Lee

As a reliable tool to measure the Young’s modulus, nanoindention technique has been used widely recently. In this paper, nanoindetation technique was overviewed with its advantage and limitation and a new method was proposed to determine material properties of film, i.e. both Young’s modulus E and Poisson’s ratio ν from load-displacement curve of shallow-depth indentation using ‘inverse method’.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Chunlai Tian ◽  
Pengfei Duan

Composite has been widely used in various fields due to its advanced performance. To reveal the relation between the mechanical properties of the composite and that of each individual component, finite element analysis (FEA) has usually been adopted. In this study, in order to predict the mechanical properties of hard coating on a soft polymer, the response of this coating system during nanoindentation was modelled. Various models, such as a viscoelastic model and fitting model, were adopted to analyse the indentation response of this coating system. By varying the substrate properties (i.e., Young’s modulus, viscoelasticity, and Poisson’s ratio), Young’s modulus, energy loss, and the viscoelastic model of the coating system were analysed, and how the mechanical properties of the substrate will affect the indentation response of the coating system was discussed.


2006 ◽  
Vol 321-323 ◽  
pp. 278-281
Author(s):  
Wen Quan Cui ◽  
Ye Yeon Won ◽  
Myong Hyun Baek ◽  
Kwang Kyun Kim

The purpose of this study was to investigate the contribution of the microstructural properties of trabecular bone in predicting its elastic modulus in the intertrochanteric region. A total of 15 trabecular bone core specimens were obtained from the proximal femurs of patients undergoing total hip arthroplasty. The micro-computed tomography (micro-CT) was used to scan each specimen to obtain micro-morphology. Microstructural parameters were directly calculated using software. Micro-CT images were converted to micro-finite element model using meshing technique, and then micro-finite element analysis (FEA) was performed to assess the mechanical property (Young’s modulus) of trabecular bone. The results showed that the ability to explain this variance of Young’s modulus is improved by combining the structural indices with each other. It suggested that assessment of bone microarchitecture should be added as regards detection of osteoporosis and evaluation of the efficacy of drug treatments for osteoporosis.


2014 ◽  
Vol 64 ◽  
pp. 1-8 ◽  
Author(s):  
K. Zhuravleva ◽  
R. Müller ◽  
L. Schultz ◽  
J. Eckert ◽  
A. Gebert ◽  
...  

Bone ◽  
2000 ◽  
Vol 26 (5) ◽  
pp. 519-524 ◽  
Author(s):  
J.P.W van den Bergh ◽  
G.H van Lenthe ◽  
A.R.M.M Hermus ◽  
F.H.M Corstens ◽  
A.G.H Smals ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 3243
Author(s):  
Cheol-Jeong Kim ◽  
Seung Min Son ◽  
Sung Hoon Choi ◽  
Tae Sik Goh ◽  
Jung Sub Lee ◽  
...  

The aim of this study was to analyze the spinal stability and safety after posterior spinal fusion with various fixation segments and screw types in patients with an osteoporotic thoracolumbar burst fracture based on finite element analysis (FEA). To realize various osteoporotic vertebral fracture conditions on T12, seven cases of Young’s modulus, namely 0%, 1%, 5%, 10%, 25%, 50%, and 100% of the Young’s modulus, for vertebral bones under intact conditions were considered. Four types of fixation for thoracolumbar fracture on T12 (fixed with T11-L1, T10-T11-L1, T11-L1-L2, and T10-T11-L1-L2) were applied to the thoracolumbar fusion model. The following screw types were considered: pedicle screw (PS) and cortical screw (CS). Using FEA, four motions were performed on the fixed spine, and the stress applied to the screw, peri-implant bone (PIB), and intervertebral disc (IVD) and the range of motion (ROM) were calculated. The lowest ROM calculated corresponded to the T10-T11-L1-L2 model, while the closest to the intact situation was achieved in the T11-L1-L2 fixation model using PS. The lowest stress in the screw and PB was detected in the T10-T11-L1-L2 fixation model.


2010 ◽  
Vol 25 (6) ◽  
pp. 1131-1136 ◽  
Author(s):  
Dejun Ma ◽  
Chung Wo Ong

In our previous study, we modeled the indentation performed on an elastic–plastic solid with a rigid conical indenter by using finite element analysis, and established a relationship between a nominal hardness/reduced Young’s modulus (Hn/Er) and unloading work/total indentation work (We/Wt). The elasticity of the indenter was absorbed in Er ≡ 1/[(1 − ν2)/E + (1 − νi2)/Ei], where Ei and νi are the Young’s modulus and Poisson’s ratio of the indenter, and E and ν are those of the indented material. However, recalculation by directly introducing the elasticity of the indenter show that the use of Er alone cannot accurately reflect the combined elastic effect of the indenter and indented material, but the ratio η = [E/(1 − ν2)]/[Ei/(1 − νi2)] would influence the Hn/Er–We/Wt relationship. Thereby, we replaced Er with a combined Young’s modulus Ec ≡ 1/[(1 − ν2)/E + 1.32(1 − νi2)/Ei] = Er/[1 + 0.32η/(1 + η)], and found that the approximate Hn/Ec–We/Wt relationship is almost independent of selected η values over 0–0.3834, which can be used to give good estimates of E as verified by experimental results.


Sign in / Sign up

Export Citation Format

Share Document