scholarly journals Comparative Plasma Exposure of Albendazole after Administration of Rapidly Disintegrating Tablets in Dogs

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Silvina G. Castro ◽  
Alicia Dib ◽  
Gonzalo Suarez ◽  
Daniel Allemandi ◽  
Carlos Lanusse ◽  
...  

The main objectives of this study were (a) to evaluate thein vitroperformance of the rapid disintegration tablets as a way to improve the solid dispersions and (b) to study thein vivopharmacokinetics of the albendazole modified formulation in dogs. Rapid disintegration of tablets seems to be a key factor for efficiency of solid dispersions with regard to improvement of the albendazole bioavailability. Thein vivoassays performed on dogs showed a marked increase in drug plasma exposure when albendazole was given in solid dispersions incorporated into rapid disintegration tablets compared with conventional solid dosage form.

2021 ◽  
Vol 11 ◽  
Author(s):  
Hardik Rana ◽  
Rushikesh Chaudhari ◽  
Vaishali Thakkar ◽  
Tejal Gandhi

Background: The better control of the drug release with immediate effect is the major concern to achieve better therapeutic action and patient compliance. The failure of the solid dispersion complex during storage as well as in-vivo is another concern for the oral solid dosage form. Objective: The prime objective of the present study was to optimize the biphasic minitablet incorporating quality by design approach using the combination of waxy erodible and water-impermeable excipients. Exploration of Soluplus as a precipitation inhibitor and Dexolve as a solubility enhancer in oral solid dosage form was the secondary objective. Methods: The drug-Excipient compatibility study was assessed by FTIR. Clozapine was chosen as a model drug that has poor aqueous solubility. The complex was formulated using B-cyclodextrin or HP B-CD or Dexolve by kneading method. The screening of solubility enhancers and their amount were performed based on phase solubility study. The precipitation inhibitor was screened as per the parachute effect study. Immediate release minitablets were formulated using a direct compression method using different disintegrating agents. The IR minitablets were evaluated for different evaluation parameters. The sustained release minitablets was formulated by hot-melt granulation technique incorporating the Precirol ATO 5 as a waxy excipient and ethyl cellulose as water impermeable excipient. The SR minitablet was optimized using a central composite design. The amount of Precirol ATO 5 and ethyl cellulose were chosen as independent variables and % drug release at 1, 6, and 10 h was selected as responses. The designed batches were evaluated for different pre and post compressional parameters. The IR and SR minitablets were filled in a capsule as per dose requirement and evaluated for in-vitro drug release. The in-vivo plasma concentration was predicted using the Back calculation of the Wagner – Nelson approach. Results: Drug – Excipient study revealed that no significant interaction was observed. Dexolve was screened as a solubility enhancer for the improvement of the solubility of clozapine. The Soluplus was chosen as a precipitation inhibitor from the parachute effect study. The immediate-release tablet was formulated using Prosolv EASYtab SP yield less disintegration time with better flowability. The sustained release mini-tablet was formulated using Precirol ATO 5 and ethyl cellulose. Two-dimensional and three-dimensional plots were revealed the significant effect of the amount of Precirol ATO 5 and ethyl cellulose. The overlay plot locates the optimized region. The in-vitro drug release study revealed the desired drug release of the final combined formulation. The in-vivo plasma concentration-time confirms the drug release up to 12h. Conclusion: The biphasic mini-tablets were formulated successfully for better control of drug release leads to high patient compliance. The use of soluplus as a precipitation inhibitor is explored in the oral solid dosage form for a poorly aqueous drug. Prosolv EASYtab SP was incorporated in the formulation as super disintegrant. The amount of Precirol ATO 5 and ethyl cellulose had a significant effect on drug release in sustained-release minitablet. The approach can be useful in the industry.


2008 ◽  
Vol 34 (11) ◽  
pp. 1209-1218 ◽  
Author(s):  
Shradhanjali Basa ◽  
Thilekkumar Muniyappan ◽  
Pradeep Karatgi ◽  
Raghavendra Prabhu ◽  
Ravi Pillai

Pharmacia ◽  
2022 ◽  
Vol 69 (1) ◽  
pp. 61-67
Author(s):  
Nataliia Shulyak ◽  
Kateryna Liushuk ◽  
Oksana Semeniuk ◽  
Nadiya Yarema ◽  
Tetyana Uglyar ◽  
...  

Atorvastatin and lisinopril are a successful combination for the treatment of patients with chronic heart failure and hypertension. Study of the dissolution kinetics of drugs in solid dosage form with lisinopril and atorvastatin and intestinal permeability to assess their equivalence in vitro were described. In medium with hydrochloric acid pH 1.2, in the medium of acetate buffer solution with a pH of 4.5 and in the medium phosphate buffer solution with a pH of 6.8 for 15 min more than 85% of the active substance passes into solution, hence the dissolution profiles these drugs in these environments are similar, and the drugs in them are “very quickly soluble”. Among the in vitro models that make it possible to assess the degree of absorption of API, the most widely used culture of adenocarcinoma cells of the colon – Caco-2. The development of the analytical methodology and its validation is the final stage of both the dissolution study and the Caco-2 test, as well as the biowaver procedure. It plays the most important role in the reliability of the results for all the above procedures and tests. To study permeability, method LC-MS/MS was developed. According to the obtained results, atorvastatin and lisinopril showed low permeability. The values ​​of recovery of transport of test and control substances through the monolayer of cells of the Caco-2 line indicate that the results of the experiment can be considered reliable. The equivalence of the drugs “Lisinopril”, tablets of 10 mg and “Atorvastatin”, tablets of 10 mg, belongs to class III BCS proven by in vitro studies.


Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
I Urakova ◽  
O Pozharitskaya ◽  
A Shikov ◽  
V Makarov ◽  
V Tikhonov

2019 ◽  
Vol 22 ◽  
pp. 221-246 ◽  
Author(s):  
Matthew Nathan Bahr ◽  
Dimple Modi ◽  
Sarsvatkumar Patel ◽  
Gossett Campbell ◽  
Gregory Stockdale

This study investigates the influence of surfactant sodium lauryl sulfate (SLS) on the solubility of poorly-water soluble drug substances, model Compound X and Compound Y, used in a fixed dose combination oral solid dosage form. To determine the impact of SLS concentration on the solubility of compounds X and Y, we experimentally determined the critical micelle concentration (CMC) of SLS in water, simulated gastric fluid (SGF), and fed state simulated intestinal fluid (FeSSIF) in the presence of Compound X and Compound Y using UV/Visible spectrophotometry at 25°C. The aggregation of SLS was characterized by calculating the standard Gibbs free energy of micellization in all the media investigated.  To enhance the understanding of SLS aggregation, high throughput experiments and in-vivo mechanistic modelling were used to determine the effect of increasing levels of SLS on the solubility of compounds X and Y as both single agent and combination products to be formulated into a suitable oral solid dosage form. Micellar formation of SLS is a spontaneous process as shown by the negative values of the standard free energy of micellization. The CMC of SLS in the various media investigated in the presence of compounds X and Y decreases in the following order: water> FeSSIF> SGF. However, the aggregation of SLS in the various media is overall more spontaneous in the following order: SGF>FeSSIF>water. Using high throughput experimentation and in-vivo mechanistic modelling, it was determined that a combination oral solid product of compounds X and Y will have optimum solubility and in-vivo absorption if 2 mg of SLS was used in the oral solid dosage form.  The results obtained from this study will help broaden the understanding of the micellization process involving SLS and poorly-water soluble drugs used in combination oral solid dosage forms.


2018 ◽  
Vol 4 (4) ◽  
pp. 523-531
Author(s):  
Hina Mumtaz ◽  
Muhammad Asim Farooq ◽  
Zainab Batool ◽  
Anam Ahsan ◽  
Ashikujaman Syed

The main purpose of development pharmaceutical dosage form is to find out the in vivo and in vitro behavior of dosage form. This challenge is overcome by implementation of in-vivo and in-vitro correlation. Application of this technique is economical and time saving in dosage form development. It shortens the period of development dosage form as well as improves product quality. IVIVC reduce the experimental study on human because IVIVC involves the in vivo relevant media utilization in vitro specifications. The key goal of IVIVC is to serve as alternate for in vivo bioavailability studies and serve as justification for bio waivers. IVIVC follows the specifications and relevant quality control parameters that lead to improvement in pharmaceutical dosage form development in short period of time. Recently in-vivo in-vitro correlation (IVIVC) has found application to predict the pharmacokinetic behaviour of pharmaceutical preparations. It has emerged as a reliable tool to find the mode of absorption of several dosage forms. It is used to correlate the in-vitro dissolution with in vivo pharmacokinetic profile. IVIVC made use to predict the bioavailability of the drug of particular dosage form. IVIVC is satisfactory for the therapeutic release profile specifications of the formulation. IVIVC model has capability to predict plasma drug concentration from in vitro dissolution media.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Sign in / Sign up

Export Citation Format

Share Document