In-Vitro Functionality of Clozapine Biphasic Release Minitablet Using Advanced Statistical Tools

2021 ◽  
Vol 11 ◽  
Author(s):  
Hardik Rana ◽  
Rushikesh Chaudhari ◽  
Vaishali Thakkar ◽  
Tejal Gandhi

Background: The better control of the drug release with immediate effect is the major concern to achieve better therapeutic action and patient compliance. The failure of the solid dispersion complex during storage as well as in-vivo is another concern for the oral solid dosage form. Objective: The prime objective of the present study was to optimize the biphasic minitablet incorporating quality by design approach using the combination of waxy erodible and water-impermeable excipients. Exploration of Soluplus as a precipitation inhibitor and Dexolve as a solubility enhancer in oral solid dosage form was the secondary objective. Methods: The drug-Excipient compatibility study was assessed by FTIR. Clozapine was chosen as a model drug that has poor aqueous solubility. The complex was formulated using B-cyclodextrin or HP B-CD or Dexolve by kneading method. The screening of solubility enhancers and their amount were performed based on phase solubility study. The precipitation inhibitor was screened as per the parachute effect study. Immediate release minitablets were formulated using a direct compression method using different disintegrating agents. The IR minitablets were evaluated for different evaluation parameters. The sustained release minitablets was formulated by hot-melt granulation technique incorporating the Precirol ATO 5 as a waxy excipient and ethyl cellulose as water impermeable excipient. The SR minitablet was optimized using a central composite design. The amount of Precirol ATO 5 and ethyl cellulose were chosen as independent variables and % drug release at 1, 6, and 10 h was selected as responses. The designed batches were evaluated for different pre and post compressional parameters. The IR and SR minitablets were filled in a capsule as per dose requirement and evaluated for in-vitro drug release. The in-vivo plasma concentration was predicted using the Back calculation of the Wagner – Nelson approach. Results: Drug – Excipient study revealed that no significant interaction was observed. Dexolve was screened as a solubility enhancer for the improvement of the solubility of clozapine. The Soluplus was chosen as a precipitation inhibitor from the parachute effect study. The immediate-release tablet was formulated using Prosolv EASYtab SP yield less disintegration time with better flowability. The sustained release mini-tablet was formulated using Precirol ATO 5 and ethyl cellulose. Two-dimensional and three-dimensional plots were revealed the significant effect of the amount of Precirol ATO 5 and ethyl cellulose. The overlay plot locates the optimized region. The in-vitro drug release study revealed the desired drug release of the final combined formulation. The in-vivo plasma concentration-time confirms the drug release up to 12h. Conclusion: The biphasic mini-tablets were formulated successfully for better control of drug release leads to high patient compliance. The use of soluplus as a precipitation inhibitor is explored in the oral solid dosage form for a poorly aqueous drug. Prosolv EASYtab SP was incorporated in the formulation as super disintegrant. The amount of Precirol ATO 5 and ethyl cellulose had a significant effect on drug release in sustained-release minitablet. The approach can be useful in the industry.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 260 ◽  
Author(s):  
Dongwei Wan ◽  
Min Zhao ◽  
Jingjing Zhang ◽  
Libiao Luan

This study aimed to develop a novel sustained release pellet of loxoprofen sodium (LXP) by coating a dissolution-rate controlling sub-layer containing hydroxypropyl methyl cellulose (HPMC) and citric acid, and a second diffusion-rate controlling layer containing aqueous dispersion of ethyl cellulose (ADEC) on the surface of a LXP conventional pellet, and to compare its performance in vivo with an immediate release tablet (Loxinon®). A three-level, three-factor Box-Behnken design and the response surface model (RSM) were used to investigate and optimize the effects of the citric acid content in the sub-layer, the sub-layer coating level, and the outer ADEC coating level on the in vitro release profiles of LXP sustained release pellets. The pharmacokinetic studies of the optimal sustained release pellets were performed in fasted beagle dogs using an immediate release tablet as a reference. The results illustrated that both the citric acid (CA) and ADEC as the dissolution- and diffusion-rate controlling materials significantly decreased the drug release rate. The optimal formulation showed a pH-independent drug release in media at pH above 4.5 and a slightly slow release in acid medium. The pharmacokinetic studies revealed that a more stable and prolonged plasma drug concentration profile of the optimal pellets was achieved, with a relative bioavaibility of 87.16% compared with the conventional tablets. This article provided a novel concept of two-step control of the release rate of LXP, which showed a sustained release both in vitro and in vivo.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Silvina G. Castro ◽  
Alicia Dib ◽  
Gonzalo Suarez ◽  
Daniel Allemandi ◽  
Carlos Lanusse ◽  
...  

The main objectives of this study were (a) to evaluate thein vitroperformance of the rapid disintegration tablets as a way to improve the solid dispersions and (b) to study thein vivopharmacokinetics of the albendazole modified formulation in dogs. Rapid disintegration of tablets seems to be a key factor for efficiency of solid dispersions with regard to improvement of the albendazole bioavailability. Thein vivoassays performed on dogs showed a marked increase in drug plasma exposure when albendazole was given in solid dispersions incorporated into rapid disintegration tablets compared with conventional solid dosage form.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 82-93
Author(s):  
Selvi Arunkumar ◽  
L. Srinivas ◽  
D. Satyavati ◽  
C. Emmanuel

The present study is an attempt to develop bilayer matrix tablets of Nebivolol Hydrochloride and Valsartan with immediate release for Nebivolol Hydrochloride and sustained release for Valsartan. Superdisintegrants such as sodium starch glycolate and Crosscarmellose sodium were evaluated for immediate release of Nebivolol Hydrochloride and polymers HPMC K100M and K4M for sustained release of Valsartan. Preformulation studies were performed prior to compression. The compressed bilayer tablets were evaluated for weight variation, thickness, hardness, friability, drug content and in vitro drug release using USP dissolution apparatus type 2 in 0.01N HCl and phosphate buffer pH 6.8. All the pre and post compression parameters were found to be within the acceptable limits. The results of dissolution show that the formulations B3 was the best of all immediate and sustained release layer batches. The release kinetics of Valsartan was subject to curve fitting analysis in order to identify the best fit kinetic model. The regression analysis proves that the best formulations follow zero order release and drug release by diffusion process based on Fick’s law of diffusion. The data for stability studies infer no considerable change in drug content and dissolution rates as per ICH guidelines. The best formulation B3 was subjected to in vivo pharmacokinetic studies in rabbit model. In vitro, In vivo correlation (IVIVC) showed considerable linearity. Hence a novel bilayer tablet formulation of Nebivolol Hydrochloride and Valsartan was successfully developed by combining both immediate (IR) and sustained (SR) release layers. Keywords: Bilayer tablets, fixed unit dosage form, Nebivolol hydrochloride, Valsartan, LC-MS analysis.


Author(s):  
KUMAR BABU PASUPULETI ◽  
VENKATACHALAM A. ◽  
BHASKAR REDDY KESAVAN

Objective: This study is to formulate Nebivolol into a Pulsatile liquid, solid composite compression coated tablet, which will delay the release of the drug in early morning hypertension conditions. Methods: The liquid, solid composite tablet was formulated and compressed with the ethylcellulose coating polymer. The percent in vitro drug release of the liquid solid composite compressed tablet was tested. Based on disintegration time and wetting time, the LCS2, LCS3, LSC6, LCS7 and LCS12 formulations were found to be the optimized solid-liquid compacts fast-dissolving core tablet formulations, which may be excellent candidates for further coating with polymer to transfer into press coated pulsatile tablet formulations. Coating the core tablet with varying ethyl cellulose concentrations resulted in five different formulations of the pulsatile press-coated tablet (CT1, CT2, CT3, CT4, CT5). In vitro drug release, in vitro release, kinetic studies, in vivo pharmacokinetic and stability tests were all performed for the prepared pulsatile press coated tablet. Results: CT3 tablets are coated with ethyl cellulose polymer, which shows maximum controlled drug release from the core tablet i.e. 96.34±1.2% at 8th h. It shows there was an efficient delay in drug release form core tablet i.e. up to 3 h, followed by the maximum amount of drug release of 96.34±2.4 at 8h. Which shows the core drug will be more efficiently protected from the gastric acid environment 1.2 pH, duodenal environment 4.0 pH and release drug only in the small intestine. Conclusion: According to the findings, CT3 Pulsatile press-coated tablet increased the bioavailability of Nebivolol by 3.11 percent.


Author(s):  
Nitin Gawai ◽  
Zahid Zaheer

 Objective: The present research study was undertaken to formulate mucoadhesive sustained release buccal tablets and patches of 5-fluorouracil (5-FU).Method: For the research experiment work design expert software version 10, stat-ease, Inc. has been used. A 32 full factorial design was selected for the formulation of the buccal tablet as well as buccal patches. In this research work, formulated tablets and patches using different polymers such as carbopol 974p, polyvinylpyrrolidone-K 30, sodium deoxycholate, microcrystalline cellulose, and polyvinyl alcohol. An after formulation of batches formulated products studied for characterization, namely, Fourier transform infrared (FTIR) and differential scanning calorimeter (DSC). Evaluation parameters studied such as weight uniformity, thickness, hardness, friability, and content uniformity also carried out. For drug release purpose from the formulation of buccal tablet and patches in vitro drug released performed. In vivo drug releases study also carried out using Rabbit for drug reaction point of view.Results: Design expert showed the significant results on independent and dependent variables. The R-Squared 0.9943 for drug release and 0.9985 for swelling index is in reasonable agreement with the formulations. FTIR and DSC indicating compatibility of the drug and polymers in the tablet formulation and patch formulations at the molecular level. The drug release of buccal tablet showed 75.10–99.34% and buccal patches showed 58.41–81.43%. These formulations showed good results when compared to the conventional tablet.Conclusion: Formulation of mucoadhesive sustained release buccal tablets and patches of 5-FU successfully done using different polymers, which would definitely help in increasing bioavailability of the drug.


2014 ◽  
Vol 17 (2) ◽  
pp. 207 ◽  
Author(s):  
Yady Juliana Manrique-Torres ◽  
Danielle J Lee ◽  
Faiza Islam ◽  
Lisa M Nissen ◽  
Julie A.Y. Cichero ◽  
...  

Purpose. To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Methods. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Results. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Conclusions. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their potential to influence therapeutic outcomes is warranted. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Gagganapalli Santhoshi Reddy ◽  
Usha Yogendra Nayak ◽  
Praful Balavant Deshpande ◽  
Srinivas Mutalik

The present study was aimed at the development of gastroretentive floating pulsatile release tablets (FPRTs) of lercanidipine HCl to enhance the bioavailability and treat early morning surge in blood pressure. Immediate release core tablets containing lercanidipine HCl were prepared and optimized core tablets were compression-coated using buoyant layer containing polyethylene oxide (PEO) WSR coagulant, sodium bicarbonate, and directly compressible lactose. FPRTs were evaluated for variousin vitrophysicochemical parameters, drug-excipient compatibility, buoyancy, swelling, and release studies. The optimized FPRTs were testedin vivoin New Zealand white rabbits for buoyancy and pharmacokinetics. DoE optimization of data revealed FPRTs containing PEO (20% w/w) with coat weight 480 mg were promising systems exhibiting good floating behavior and lag time in drug release. Abdominal X-ray imaging of rabbits after oral administration of the tablets, confirmed the floating behavior and lag time. A quadratic model was suggested for release at 7th and 12th h and a linear model was suggested for release lag time. The FPRT formulation improved pharmacokinetic parameters compared to immediate release tablet formulation in terms of extent of absorption in rabbits. As the formulation showed delay in drug release bothin vitroandin vivo, nighttime administration could be beneficial to reduce the cardiovascular complications due to early morning surge in blood pressure.


Sign in / Sign up

Export Citation Format

Share Document