free energy of micellization
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sharmin Sultana ◽  
Abdullah Al Mamun ◽  
Shahina Aktar ◽  
Shamim Mahbub ◽  
Kareem Yusuf ◽  
...  

Abstract Herein, the aggregation manner of the mixture of polyvinyl alcohol (PVA) and tetradecyltrimethylammonium bromide (TTAB) was performed in polyols (glucose, maltose and galactose) media over 300.55–320.55 K temperatures range with 5 K interval through conductivity measurement method. The micelle formation of TTAB + PVA mixture was identified by the assessment of critical micelle concentration (CMC) from the plots of specific conductivity (κ) versus TTAB concentration. The degree of micelle ionization (α), the extent of bound counter ions (β) as well as thermodynamic properties ( Δ G m 0 ${\Delta}{G}_{m}^{0}$ , Δ H m 0 ${\Delta}{H}_{m}^{0}$ and Δ S m 0 ${\Delta}{S}_{m}^{0}$ ) of TTAB + PVA systems have been estimated. The CMC values reveal that the micelle formation of TTAB + PVA mixture experience an enhancement in the manifestation of polyols. The values of free energy of micellization ( Δ G m 0 ${\Delta}{G}_{m}^{0}$ ) are negative for the TTAB + PVA system in aqueous polyols media, suggesting a spontaneous aggregation phenomenon. The Δ H m 0 ${\Delta}{H}_{m}^{0}$ and Δ S m 0 ${\Delta}{S}_{m}^{0}$ values of TTAB + PVA systems direct that the PVA molecule interacts with TTAB through the exothermic, ion-dipole, and hydrophobic interactions. The thermodynamic properties of transfer were also determined for the move of TTAB + PVA mixture from H2O to water + polyols mixed solvents. The values of compensation temperature (T c) and intrinsic enthalpy gain ( Δ H m 0 , ∗ ${\Delta}{H}_{m}^{0,\ast }$ ) were evaluated and discussed for the studied system.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Md. Ariful Haque ◽  
Shamim Mahbub ◽  
Mohammad Majibur Rahman ◽  
Md. Anamul Hoque ◽  
Dileep Kumar ◽  
...  

Abstract In the present study, the conductometric and dye-solubilization techniques have been utilized to investigate the interaction between an anionic dye (acid yellow 23 [AY]) and a cationic surfactant (cetyltrimethylammonium bromide [CTAB]) in presence of organic (ethanol)/inorganic (NaCl) additives. From the conductometric method, two critical micelle concentrations (cmc) were found for AY + CTAB mixture in an aqueous system and the cmc values were found to undergo a change with the variation of AY concentrations. The cmc values of AY + CTAB systems were observed higher in the alcoholic medium, while the same was found to be lower in the NaCl solutions. The change in cmc of AY + CTAB systems shows an U-like curve with an increase of temperature. The negative free energy of micellization ( Δ G m o ${\Delta}{G}_{m}^{o}$ ) for the AY + CTAB systems has indicated a spontaneous micelle formation in all of the cases studied. The enthalpy ( Δ H m o ${\Delta}{H}_{m}^{o}$ ), as well as the entropy of micellization ( Δ S m o ${\Delta}{S}_{m}^{o}$ ) for the AY + CTAB systems, were assessed and discussed with proper reasoning. Additionally, the enthalpy-entropy compensation parameters were also investigated and illustrated. The solubility of AY and C D was observed to rise linearly with an increase in the concentration of CTAB/NaCl solution. The solubilization capacity (χ) of AY, the molar partition coefficient (K M) amongst the micellar and the aqueous phase, and free energy of solubilization ( Δ G S o ${\Delta}{G}_{S}^{o}$ ) were evaluated and discussed in detail. The former parameters undergo an increase with an increase of NaCl concentrations.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Medinat O. Osundiya ◽  
Segun E. Olaseni ◽  
Rasaq A. Olowu ◽  
Olanrewaju Owoyomi

Abstract The effect of triethanolamine, a solvent with wide technical and industrial benefit on the micellization of an aqueous mixture of cationic surfactants, dodecyltrimethylammonium bromide (DETAB) and hexadecyltrimethylammonium bromide (HATAB) was studied to examining the stability of the mixed micelles at 298.1, 303.1, 308.1 and 313.1 K using the electrical conductance method. The values of the critical micelle concentration (C*) were found to decrease with an increase in the concentration of triethanolamine (TEA). The values of the free energy of micellization (ΔGm) were negative at a particular temperature, and the extent of spontaneity was discovered to increase when the concentration of TEA was increased. However, an increase in temperature was observed to have a negative linear relationship with the spontaneity of the process. The formation of the mixed micelles was an exothermic process, and it was also TEA and temperature-dependent with a trend similar to those observed in the free energy of micellization (ΔGm). The degree of disorderliness of the system was also found to be entropy driven at a higher concentration of TEA. The synergistic interaction between the molecules of DETAB–HATAB in the presence of TEA (0.4% v/v) and the spontaneity of the system was at the maximum at 0.1:0.9 mol fraction ratio and the energetics of the system was discussed based on hydrophobic–solvophobic interaction of the monomers in TEA at elevated temperatures.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1044
Author(s):  
Fawad Ahmad ◽  
Muneera D. F. Alkahtani ◽  
Muhammad Babar Taj ◽  
Afnan M. Alnajeebi ◽  
Seraj Omar Alzahrani ◽  
...  

In the present study, naphthyl acetohydrazide (HL) ligand was prepared and used for the synthesis of new six amorphous transition metal (Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II)) complexes. All the compounds were characterized by elemental analysis, UV-vis, FT-IR, 1H- and 13C-NMR, and Matrix-Assisted Laser Desorption Ionization (MALDI). The solubilization study was carried out by estimating the interaction between the metal complexes with surfactants viz. sodium stearate (SS) and Cetyltrimethylammonium bromide (CTAB). UV-Visible spectroscopy was employed to determine partitioning and binding parameters, whereas electrical conductivity measurements were employed to estimate critical micellar concentration (CMC), the extent of dissociation, and free energy of micellization. The CT-DNA interaction of synthesized compounds with DNA represents the major groove binding. The synthesized ligand and metal complexes were also tested against bacterial and fungal strains and it has been observed that Cu(II) complex is active against all the strains except Candida albicans, while Cd(II) complex is active against all bacterial and fungal strains except Pseudomonas. Among all compounds, only the Pd(II) complex shows reasonable activity against cervical cancer HeLa cell lines, representing 97% inhibition.


2020 ◽  
Vol 17 (4) ◽  
pp. 1207
Author(s):  
Sangita Acharya ◽  
Tulasi Niraula ◽  
Ajaya Bhattarai

The physicochemical behaviour of dodecyltrimethylammonium bromide (DTAB) in water and ethanol-water mixture in the presence and absence of ZnSO4 were studied by measuring the conductivity at 298.15 K. The pre-micellar (S1) and post-micellar slopes (S2) were obtained and calculated the degree of dissociation (α) and the critical micelle concentration (cmc). With an increase in ethanol content, the cmc and α of DTAB increased whereas, in the presence of ZnSO4, the cmc and α decreased. By using cmc and α, thermodynamic properties as the standard free energy of micellization ( ) were evaluated. With an increase in ethanol content, the negative values of  are decreased indicating less spontaneous in the micellization which makes micellization less favourable. The correlation of the pre-micellar and post-micellar slopes with the volume fraction of ethanol were discussed. DTAB micellization was tested in contexts of specific solvent parameters and solvophobic parameter.


2020 ◽  
Vol 17 (1(Suppl.)) ◽  
pp. 0255
Author(s):  
Aamer A. Al-Hatem

The determination of critical micelle concentration of selected non-ionic surfactants (Tween 20,40 and 80) have been investigated using magnetic water(MW)as an aqueous medium.Conductometry technique is used to determine critical micelle concentration.The effect of alcohol addition and temperature variation at the range(293.15 -303.15K) are also pursued. It is concluded that the process of micellization is spontaneous and endothermic because of the observed free energy of micellization (ΔGom) , enthalpy change of micellization  (ΔHom), and entropy change of micellization (ΔSom) for the system was also studied.The properties of the non-ionic surfactants were studied, both in absence and presence of alcohol. The results obtained were explained in light of hydrophobic-hydrophilic interactions and chain length of alcohol.The temperature change has slight effect on the micellization process. .


Surfactants ◽  
2019 ◽  
pp. 177-230
Author(s):  
Bob Aveyard

Surfactants form micelles in aqueous solution above the critical micelle concentration (cmc); micelles are dynamic structures. Micellization is driven by the transfer of surfactant chains from water to the micelle core. There is an optimum size (aggregation number) and shape for micelles (dependent on surfactant molecular shape and packing within micelles) for which the standard free energy of micellization, Δ‎micμ‎o, is minimum. Inert electrolyte influences the degree of dissociation (α‎) of ionic micelles and hence micellar shape and aggregation number. Micellization in mixed surfactant solutions, and in mixed polymer + surfactant systems is also discussed. Micelles can dissolve (solubilize) other amphiphilic materials and nonpolar oils, which changes the cmc. If sufficient oil is solubilized, microemulsion droplets result (see Chapter 10). As the concentration of micelles in solution rises, intermicellar interactions lead to the formation of a variety of lyotropic liquid crystalline phases (mesophases).


2019 ◽  
Vol 233 (7) ◽  
pp. 933-947 ◽  
Author(s):  
Noor Saeed Khattak ◽  
Luqman Ali Shah ◽  
Muhammad Sohail ◽  
Safeer Ahmad ◽  
Muhammad Farooq ◽  
...  

Abstract Nonsteroidal anti-inflammatory hydrophobic drugs (NSAIDs) are amongst the most commonly given categories of drugs worldwide in the treatment of pain, irritation and some of them even fever in many conditions. Critical micelle concentration of NSAIDs with Naproxen sodium (NS) and its mixture with non-ionic surfactants i.e. Tween 20, Tween 40 and Tween 60 was investigated at 293 K, 303 K, 313 K and 323 K at different concentrations using surface tension and dynamic laser light scattering (DLS) techniques. Due to amphiphilic behaviour in aqueous solution NS form aggregates at sufficiently high concentration. Thermodynamic/adsorption properties like free energy of micellization (ΔGmic), enthalpy of micellization (ΔHmic), entropy of micellization (ΔSmic), Γmic and area per molecule (A2) of NS in the presence of surfactants were also measured at different temperatures. The results showed that the presence of surfactants favoured the ΔGmic and become more enhanced with increase in temperature. Further the solubility of drug is more favourable with increase in polyethylene chain in basic surfactant molecules i.e. 20–60, which indicates that Tween-60 enhanced the solubility of NS more comparatively to Tween-40 and Tween-20 and may be applied as best additive for solubilisation of NS.


2019 ◽  
Vol 22 ◽  
pp. 221-246 ◽  
Author(s):  
Matthew Nathan Bahr ◽  
Dimple Modi ◽  
Sarsvatkumar Patel ◽  
Gossett Campbell ◽  
Gregory Stockdale

This study investigates the influence of surfactant sodium lauryl sulfate (SLS) on the solubility of poorly-water soluble drug substances, model Compound X and Compound Y, used in a fixed dose combination oral solid dosage form. To determine the impact of SLS concentration on the solubility of compounds X and Y, we experimentally determined the critical micelle concentration (CMC) of SLS in water, simulated gastric fluid (SGF), and fed state simulated intestinal fluid (FeSSIF) in the presence of Compound X and Compound Y using UV/Visible spectrophotometry at 25°C. The aggregation of SLS was characterized by calculating the standard Gibbs free energy of micellization in all the media investigated.  To enhance the understanding of SLS aggregation, high throughput experiments and in-vivo mechanistic modelling were used to determine the effect of increasing levels of SLS on the solubility of compounds X and Y as both single agent and combination products to be formulated into a suitable oral solid dosage form. Micellar formation of SLS is a spontaneous process as shown by the negative values of the standard free energy of micellization. The CMC of SLS in the various media investigated in the presence of compounds X and Y decreases in the following order: water> FeSSIF> SGF. However, the aggregation of SLS in the various media is overall more spontaneous in the following order: SGF>FeSSIF>water. Using high throughput experimentation and in-vivo mechanistic modelling, it was determined that a combination oral solid product of compounds X and Y will have optimum solubility and in-vivo absorption if 2 mg of SLS was used in the oral solid dosage form.  The results obtained from this study will help broaden the understanding of the micellization process involving SLS and poorly-water soluble drugs used in combination oral solid dosage forms.


Sign in / Sign up

Export Citation Format

Share Document