scholarly journals Elevated Blood Pressure in the Acute Phase of Stroke and the Role of Angiotensin Receptor Blockers

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Simona Lattanzi ◽  
Mauro Silvestrini ◽  
Leandro Provinciali

Raised blood pressure (BP) is common after stroke but its causes, effects, and management still remain uncertain. We performed a systematic review of randomized controlled trials that investigated the effects of the angiotensin receptor blockers (ARBs) administered in the acute phase (≤72 hours) of stroke on death and dependency. Trials were identified from searching three electronic databases (Medline, Cochrane Library and Web of Science Database). Three trials involving 3728 patients were included. Significant difference in BP values between treatment and placebo was found in two studies. No effect of the treatment was seen on dependency, death and vascular events at one, three or six months; the cumulative mortality and the number of vascular events at 12 months differed significantly in favour of treatment in one small trial which stopped prematurely. Evidence raises doubts over the hypothesis of a specific effect of ARBs on short- and medium-term outcomes of stroke. It is not possible to rule out that different drugs might have different effects. Further trials are desirable to clarify whether current findings are generalizable or there are subgroups of patients or different approaches to BP management for which a treatment benefit can be obtained.

2020 ◽  
Vol 52 (05) ◽  
pp. 289-297
Author(s):  
Dandan He ◽  
Yaru Zhang ◽  
Wei Zhang ◽  
Yue Xing ◽  
Yipeng Guo ◽  
...  

AbstractThe role of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) in reducing the progression of albuminuria and risk of cardiovascular events in hypertensive patients with diabetic kidney disease (DKD) is well-documented. However, the efficacy and safety of these agents in normotensive patients with DKD are still controversial. MEDLINE, Embase, and Cochrane Library were searched for relevant random controlled trials. The odd risk (OR) reductions were calculated with a random-effects model. Decrease in albuminuria, changes in eGFR, major cardiovascular events, and drug-related adverse events were analyzed. Thirteen RCTs including 1282 patients were retrieved. Compared with placebo or other active agent groups, ACEIs or ARBs significantly decreased albuminuria (MD –80.28 mg/d, 95% CI –104.79 mg/d to –55.77 mg/d), and the efficacy is independent of changes in blood pressure and systolic blood pressure at baseline. The result of subanalysis showed the declining of albuminuria was more significantly in normotensive DKD patients with 2DM (p=0.005). No significant differences were found with regard to the declining of evaluated glomerular filtration rate (eGFR) (MD –0.29 ml/min/1.73 m2, 95% CI –2.99 to 2.41 ml/min/1.73 m2). There were no significant differences in the side effect of the drugs such as hypotension and hyperkalemia. This meta-analysis demonstrated that ACEIs or ARBs can decrease albuminuria to varying degree in normotensive patients with DKD, and better response occurred in patients with 2DM.


2005 ◽  
Vol 6 (1_suppl) ◽  
pp. S8-S11
Author(s):  
Hans-Christoph Diener

Hypertension is the most important modifiable risk factor for primary and secondary stroke prevention. All antihypertensive drugs are effective in primary prevention: the risk reduction for stroke is 30—42%. However, not all classes of drugs have the same effects: there is some indication that angiotensin receptor blockers may be superior to other classes of antihypertensive drugs in stroke prevention. Seventy-five percent of patients who present to hospital with acute stroke have elevated blood pressure within the first 24—48 hours. Extremes of systolic blood pressure (SBP) increase the risk of death or dependency. The aim of treatment should be to achieve and maintain the SBP in the range 140—160 mmHg. However, fast and drastic blood pressure lowering can have adverse consequences. The PROGRESS trial of secondary prevention with perindopril + indapamide versus placebo + placebo showed a decrease in numbers of stroke recurrences in patients given both active antihypertensive agents, more impressive for cerebral haemorrhage.There were also indications that active treatment might decrease the development of post-stroke dementia.


2021 ◽  
Vol 54 (3) ◽  
pp. 275-276
Author(s):  
Kanwal Ashiq ◽  
Sana Ashiq

Dear Editor, In December 2019, a new virus which is known as SARS-COV-2 (COVID-19) was identified. In a short period, this virus spread rapidly and caused significant morbidities and mortalities across the earth. On March 11, 2020, the World Health Organization (WHO) declared a pandemic due to the logarithmic expansion of COVID-19 cases globally.1 Various guidelines were issued, and a complete lockdown has been observed on a large scale to stop the spread of the virus. Currently, there is no specific treatment for COVID-19 is available. Throughout the year 2020, scientists struggled a lot to find the COVID-19 cure, and many vaccines are successfully developed which would be helpful in the prevention of disease. Nevertheless, the emergence of virus variants remains an issue. The epidemiological trends and clinical features of this disease have been reported in several publications.2 Due to comorbidities, COVID-19 disease can exacerbate and may result in increased severity and deadly consequences. In a study, the most common comorbidities in COVID-19 patients were reported as following; diabetes (19%), hypertension (30%), and coronary heart disease (8%). In hypertension, blood pressure elevates from the threshold level. The occurrence of hypertension is not necessarily to be associated with COVID-19 as hypertension is quite frequent in geriatric patients, and these patients are at higher risk of being infected with COVID-19.3,4 Angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme (ACE) inhibitors are widely prescribed for the cure of hypertension and other cardiovascular-related diseases. On the other hand, the COVID-19 virus binds with ACE2 to gain entry into the lung cells. ACE inhibitors and ARBs escalate ACE2 that could hypothetically increase the chance of COVID-19 binding to lung cells and could headway to more damage. Conversely, in experimental studies, ACE2 showed a protective effect against lung injury. Due to the anti-inflammatory potential of ACE inhibitors and ARBs, these agents can reduce the incidence of developing myocarditis and acute respiratory distress syndrome in COVID-19 patients. There is no evidence that hypertension is linked with the COVID-19 and anti-hypertensive medicines (ACE inhibitors and ARBs) are either harmful or beneficial during the COVID-19 pandemic.5 During this unprecedented situation, the Council on Hypertension of the European Society of Cardiology released a statement that “The Council on Hypertension strongly recommends that physicians and patients should continue treatment with their usual anti-hypertensive therapy because there is no clinical or scientific evidence to suggest that treatment with ACEIs or ARBs should be discontinued because of the COVID-19 infection.” After this announcement, many other societies also recommend that patients should continue using their current hypertensive therapy and if necessary, after careful assessment, changes can be made in the hypertensive regimen.6 According to estimation, globally, 1.5 billion people can suffer from hypertension by 2025 which may contribute approximately 75% of stroke risk and 50% of heart disease risk. CVDs accounts almost 38% of deaths related to the non-communicated disease (NCDs). In Pakistan, hypertension is a chief health concern that leads to significant morbidity and mortality. Blood pressure can be control with medications and lifestyle modifications. One of the best approaches to control and improve blood pressure is team-based care consisting of doctors, pharmacists, and nurses. During COVID-19, collaborative efforts are required to improve patient’s quality of life and to reduce the healthcare burden.7,8 Keywords: COVID-19, Hypertension, Pandemic, ACE inhibitors References Ashiq K, Bajwa MA, Ashiq S. COVID-19 Pandemic and its Impact on Pharmacy Education. Turkish J Pharma Sci. 2021;18(2):122. Ashiq K, Ashiq S, Bajwa MA, Tanveer S, Qayyum M. Knowledge, attitude and practices among the inhabitants of Lahore, Pakistan towards the COVID-19 pandemic: an immediate online based cross-sectional survey while people are under the lockdown. Bangladesh J Med Sci. 2020:69-S 76. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. Ashiq S, Ashiq K. The Role of Paraoxonase 1 (PON1) Gene Polymorphisms in Coronary Artery Disease: A Systematic Review and Meta-Analysis. Biochem Genet. 2021:1-21. Schiffrin EL, Flack JM, Ito S, Muntner P, Webb RC. Hypertension and COVID-19. Am J Hypertens. 2020;33(5):373–374. Patel AB, Verma A. COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: what is the evidence? JAMA. 2020;323(18):1769-70. Riaz M, Shah G, Asif M, Shah A, Adhikari K, Abu-Shaheen A. Factors associated with hypertension in Pakistan: A systematic review and meta-analysis. PLoS One. 2021;16(1):e0246085. Zarei L, Karimzadeh I, Moradi N, Peymani P, Asadi S, Babar Z-U-D. Affordability assessment from a static to dynamic concept: a scenario-based assessment of cardiovascular medicines. Int J Environ Res Public Health. 2020;17(5):1710.


2019 ◽  
Vol 40 (12) ◽  
pp. 756-761
Author(s):  
Miguel Ramirez-Jimenez ◽  
Felix Morales-Palomo ◽  
Juan Fernando Ortega ◽  
Ricardo Mora-Rodriguez

AbstractWe studied the effects of supramaximal interval exercise (SIE) with or without antihypertensive medication (AHM) on 21-hr blood pressure (BP) response. Twelve hypertensive patients chronically medicated with AHM, underwent three trials in a randomized order: a) control trial without exercise and substituting their AHM with a placebo (PLAC); b) placebo medicine and a morning bout of SIE (PLAC+SIE), and c) combining AHM and exercise (AHM+SIE). Acute and ambulatory blood pressure responses were measured for 21-hr after treatment. 20  min after treatment, systolic blood pressure (SBP) readings were reduced, similar to readings after PLAC+SIE (−9.7±6.0 mmHg, P<0.001) and AHM+SIE (−10.4±7.9 mmHg, P=0.001). 21 h after treatment, SBP remained reduced after PLAC+SIE (125±12 mmHg, P=0.022) and AHM+SIE (122±12 mmHg, P=0.013) compared to PLAC (132±16 mmHg). The BP reduction in PLAC+SIE faded out at 4 a.m., while in AHM+SIE it continued overnight. At night, BP reduction was larger in AHM+SIE than PLAC+SIE (–5.6±4.0 mmHg, P=0.006). Our data shows that a bout of supramaximal aerobic interval exercise in combination with ARB medication in the morning elicits a sustained blood pressure reduction lasting at least 21-h. Thus, the combination of exercise and angiotensin receptor blocker medication seems superior to exercise alone for acutely decreasing blood pressure.


Sign in / Sign up

Export Citation Format

Share Document