scholarly journals Causes of Early Age Cracking on Concrete Bridge Deck Expansion Joint Repair Sections

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jared R. Wright ◽  
Farshad Rajabipour ◽  
Jeffrey A. Laman ◽  
Aleksandra Radlińska

Cracking of newly placed binary Portland cement-slag concrete adjacent to bridge deck expansion dam replacements has been observed on several newly rehabilitated sections of bridge decks. This paper investigates the causes of cracking by assessing the concrete mixtures specified for bridge deck rehabilitation projects, as well as reviewing the structural design of decks and the construction and curing methods implemented by the contractors. The work consists of (1) a comprehensive literature review of the causes of cracking on bridge decks, (2) a review of previous bridge deck rehabilitation projects that experienced early-age cracking along with construction observations of active deck rehabilitation projects, and (3) an experimental evaluation of the two most commonly used bridge deck concrete mixtures. Based on the literature review, the causes of concrete bridge deck cracking can be classified into three categories: concrete material properties, construction practices, and structural design factors. The most likely causes of the observed early-age cracking were found to be inadequate curing and failure to properly eliminate the risk of plastic shrinkage cracking. These results underscore the significance of proper moist curing methods for concrete bridge decks, including repair sections. This document also provides a blueprint for future researchers to investigate early-age cracking of concrete structures.

Author(s):  
Matthew A. Haynes ◽  
Erdem Coleri ◽  
Shashwath Sreedhar

Deterioration of the concrete bridge deck is one of the most significant problems affecting the service life of bridges in the United States (U.S.). The early failure of asphalt pavement overlays on concrete bridge decks with spray-on waterproofing membranes has been recognized as a significant issue by the Oregon Department of Transportation (ODOT). Potential reasons for the failure of the asphalt overlays were thought to be the poor adhesion between the waterproofing membrane and the asphalt-wearing course, and the material properties of the asphalt layer. Moisture penetration into the asphalt overlay and standing water on the concrete bridge deck result in expansion and contraction at the interface on the bridge deck during freeze-thaw cycles. Expansion and contraction because of freeze-thaw cycles cause debonding at the interface and result in an increased rate of deterioration for the asphalt concrete overlay. Additionally, the de-icing salts used to prevent hazardous roadway surfaces in the winter permeate into the deck and cause corrosion of the steel reinforcement, weakening the structural integrity of the bridge. The main goal of this study is to develop an impermeable asphalt mixture with high cracking and rutting resistance that can seal and protect the concrete bridge deck by preventing water and de-icing salts from penetrating into the concrete deck. Permeability of developed asphalt mixtures was quantified by permeability testing and moisture sensor measurements. Rutting and cracking resistance of the developed impermeable asphalt mixture strategies were also evaluated by conducting flow number (FN) and semi-circular bend (SCB) tests in the laboratory.


2011 ◽  
Vol 90-93 ◽  
pp. 1027-1032
Author(s):  
Xian Xi Tang ◽  
Xian Zhou Tang ◽  
Yue Xu ◽  
Wei Guo

In order to study the reasonable thickness and width of bridge decks of concrete T beam bridge, 36 ANSYS finite element models of simply supported concrete T beam were established, stress performance of each models have been analyzed under the centre load. The analysis results indicated that when the bridge deck thickness reached 22cm, it was no much sense of influence of bridge decks stress and deflection change by increasing the thickness of the bridge deck, therefore, the recommended value of deck thickness was about 22cm. Since the width of the bridge deck has little effect of the mechanical properties and stiffness of it, so the recommended values of the bridge decks width should be determined combined with the diaphragm and the integral stiffness of T beam bridge.


2021 ◽  
Author(s):  
Fouad Taki

he construction industry is the largest contributor to environmental loading, and while development will require more infrastructure to achieve its goals, this will require more construction and hence more pollution. In order to achieve a sustainable development, the construction industry has to reduce its environmental loading and consumption of energy and raw materials. The methodology of Life Cycle Assessment (LCA) can help in quantifying the cradle to grave impact of construction on the environment. This study was performed to develop a model that uses LCA methodology to estimate the environmental impact of concrete bridge decks in North America. The model traces the emissions during the life cycle of a concrete bridge deck, and then calculates the impact of these emissions on the environment. This study was performed to develop a model that uses LCA methodology to estimate the environmental impact of concrete bridge decks in North America. The model traces the emissions during the life cycle of a concrete bridge deck, and then calculates the impact of these emissions on the environment. The model also calculates the energy and raw materials that are consumed during the life cycle of a concrete bridge deck. This model can be used by designers to evaluate alternative bridge deck designs to select the environmentally sound one.


2020 ◽  
Vol 34 (4) ◽  
pp. 04020066
Author(s):  
Waleed K. Hamid ◽  
Eric P. Steinberg ◽  
Ali A. Semendary ◽  
Issam Khoury ◽  
Kenneth Walsh

2021 ◽  
Author(s):  
Fouad Taki

he construction industry is the largest contributor to environmental loading, and while development will require more infrastructure to achieve its goals, this will require more construction and hence more pollution. In order to achieve a sustainable development, the construction industry has to reduce its environmental loading and consumption of energy and raw materials. The methodology of Life Cycle Assessment (LCA) can help in quantifying the cradle to grave impact of construction on the environment. This study was performed to develop a model that uses LCA methodology to estimate the environmental impact of concrete bridge decks in North America. The model traces the emissions during the life cycle of a concrete bridge deck, and then calculates the impact of these emissions on the environment. This study was performed to develop a model that uses LCA methodology to estimate the environmental impact of concrete bridge decks in North America. The model traces the emissions during the life cycle of a concrete bridge deck, and then calculates the impact of these emissions on the environment. The model also calculates the energy and raw materials that are consumed during the life cycle of a concrete bridge deck. This model can be used by designers to evaluate alternative bridge deck designs to select the environmentally sound one.


2006 ◽  
Vol 33 (6) ◽  
pp. 756-765 ◽  
Author(s):  
George Morcous ◽  
Zoubir Lounis

This paper presents a new approach to optimizing the maintenance of concrete bridge decks. This approach combines a stochastic deterioration model and a multiobjective optimization model. The stochastic deterioration model is based on the first-order Markov chain, which predicts the probabilistic time variation of bridge deck conditions. The multiobjective optimization model takes into account two important and conflicting criteria: the minimization of maintenance costs and the maximization of the network condition. This approach achieves the best compromise between these competing criteria while considering the uncertainty in bridge deck deterioration. The feasibility and capability of the proposed approach are demonstrated with field data for a sample network of bridge decks obtained from the Ministère des Transports du Québec database. This example illustrates the effectiveness of the proposed approach in determining the optimal set of maintenance alternatives for reinforced concrete bridge decks when two or more relevant optimization criteria are taken into consideration.Key words: concrete bridge deck, maintenance management, multicriteria optimization, Markov chain, deterioration model.


2020 ◽  
Vol 9 (3) ◽  
pp. 127-137
Author(s):  
Aqeed Mohsin Chyad ◽  
Osama Abudayyeh

Developing an accurate and reliable model for concrete bridge deck deterioration rates is a significant step in improving the condition assessment process. The main goal of this study is to develop a deterioration prediction model based on the condition ratings of concrete bridge decks over the past 25 years as reported in the National Bridge Inventory (NBI) database. While the literatures have typically suggested the Markov chain method as the most common technique used in condition assessment of bridges, the analysis in this pilot study suggests that the lognormal distribution function is a better model for concrete bridge deck condition data. This paper compares the two approaches and presents a new approach that combines the more commonly used Markov chain method with the lognormal distribution function to arrive at an optimal model for predicting bridge deck deterioration rates. The prediction error in the combined model is less than each of the two models (i.e. Markov and Lognormal). Additionally, the steel structure type illustrated the highest deterioration rates within condition ratings from 8 to 4 Comparing with other types. The bridge decks that have ADT of more than 4,000 (vehicles/day) deteriorated faster than of those with ADT less than 4,000 with the same type of structure and skew angle. Bridge decks with skew angles more than 30º deteriorate faster than of those with skew angles less than 30°. Furthermore, it showed that most new Michigan concrete bridge decks may take at least 40 years before dropping gradually from 9 to 3.


2020 ◽  
Vol 9 (2) ◽  
pp. 63-73 ◽  
Author(s):  
Aqeed Mohsin Chyad ◽  
Osama Abudayyeh

Accurate and reliable deterioration rate estimates for concrete bridge decks are an important part of the overall bridge condition assessment. The main objective of this paper is to determine the time in condition ratings (TICRs) of concrete bridge decks and assess the impact of average daily traffic (ADT), age, and deck area on the bridge deck condition. Condition ratings of bridge decks over 24 years for Michigan state were collected from the National Bridge Inventory (NBI) data. The Anderson-Darling statistical test was used to evaluate and rank five practical probability distribution functions to select the best fit for Michigan state data. The results indicate that the best statistical model for Michigan state data is the lognormal function. It was illustrated that the TICR decreases when the condition rating decreases. When a concrete bridge deck condition is rated at 8, it can take 11.29 years to drop to the lower rating of 7. However, when the concrete bridge deck condition is rated at 4, it may take 6.64 years to drop to the lower condition rating of 3. It was also observed that on average, bridge decks in Michigan stay much longer than the typical inspection interval (i.e., 2 years), suggesting that inspection intervals can be longer than 2 years for bridges in good condition ranges. The results also show that ADT, age, and deck area are important factors in the deterioration rates of concrete bridge decks.


Sign in / Sign up

Export Citation Format

Share Document