scholarly journals An Alternative Approach for Improving Performance of Organic Photovoltaics by Light-Enhanced Annealing

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
En-Ping Yao ◽  
Chiu-Sheng Ho ◽  
Chang Yu ◽  
E-Ling Huang ◽  
Ying-Nan Lai ◽  
...  

This work proposes an approach for improving the performance of poly(3-hexylthiophene) (P3HT-) based organic photovoltaics (OPVs). P3HT-based bulk heterojunction (BHJ) film can absorb the energy from 532 nm laser light and be transformed into favorable morphology. A combination of traditional thermal annealing and laser annealing improved device performance, with a slight increase in fill factor and a significant improvement in short-circuit current density. Better crystallization and a higher degree of molecular order in the thermal/laser coannealed P3HT-based BHJ film were observed through X-ray diffraction and Raman spectroscopy.

Author(s):  
Nur Shakina Mohd Shariff ◽  
Puteri Sarah Mohamad Saad ◽  
Mohamad Rusop Mahmood

There has been an increasing interest towards organic solar cells after the discovery of conjugated polymer and bulk-heterojunction concept. Eventhough organic solar cells are less expensive than inorganic solar cells but the power conversion energy is still considered low. The main objective of this research is to investigate the effect of the P3HT’s thickness and concentration towards the efficiency of the P3HT:Graphene solar cells. A simulation software that is specialize for photovoltaic called SCAPS is used in this research to simulate the effect on the solar cells. The solar cell’s structure will be drawn inside the simulation and the parameters for each layers is inserted. The result such as the open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), efficiency (η), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristic will be calculated by the software and all the results will be put into one graph.


2013 ◽  
Vol 743-744 ◽  
pp. 920-925
Author(s):  
Hong Zhou Yan ◽  
Jun You Yang ◽  
Shuang Long Feng ◽  
Ming Liu ◽  
Jiang Ying Peng ◽  
...  

TiO2 nanotubes array was fabricated by anodization. Effect of reaction duration on the morphology of TiO2 nanotube arrays was studied detailedly. The structure and morphology of the prepared nanotubes array was characterized by X-ray diffraction and scanning electron microscopy, respectively. The fabricated TiO2 arrays were peeled off and adhered to FTO glass with adhesive (mixture of tetrabutyl titanate and polyethylene glycol), then they were sintered at 450 for photoanode of DSSC. The photovoltaic performance of the prepared sample as the DSSC anode was investigated. An open circuit voltage of 0.69V and a short circuit current density of 7.78mA/cm2 were obtained, and the fill factor and the convert efficiency were 0.517 and 2.78%, respectively.


2019 ◽  
Vol 150 (11) ◽  
pp. 1921-1927 ◽  
Author(s):  
Stefan Weber ◽  
Thomas Rath ◽  
Birgit Kunert ◽  
Roland Resel ◽  
Theodoros Dimopoulos ◽  
...  

Abstract In this work, the influence of a partial introduction of bromide (x = 0–0.33) into MA0.75FA0.15PEA0.1Sn(BrxI1−x)3 (MA: methylammonium, FA: formamidinium, PEA: phenylethylammonium) triple cation tin perovskite on the material properties and photovoltaic performance is investigated and characterized. The introduction of bromide shifts the optical band gap of the perovskite films from 1.29 eV for the iodide-based perovskite to 1.50 eV for the perovskite with a bromide content of x = 0.33. X-ray diffraction measurements reveal that the size of the unit cell is also gradually reduced based on the incorporation of bromide. Regarding the photovoltaic performance of the perovskite films, it is shown that already small amounts of bromide (x = 0.08) in the perovskite system increase the open circuit voltage, short circuit current density and fill factor. The maximum power conversion efficiency of 4.63% was obtained with a bromide content of x = 0.25, which can be ascribed to the formation of homogeneous thin films in combination with higher values of the open circuit voltage. Upon introduction of a higher amount of bromide (x = 0.33), the perovskite absorber layers form pinholes, thus reducing the overall device performance. Graphic abstract


2021 ◽  
Vol 21 (3) ◽  
pp. 1659-1666
Author(s):  
Chia-Hsun Chen ◽  
Jiun Haw Lee ◽  
Chien-Liang Lin ◽  
Tien-Lung Chiu

A nanostructured molybdenum trioxide (MoO3) layer was successfully fabricated utilizing various deposition rates, employed as an anodic buffer layer to separate the active layer from a silver anode and modifying the anodic surface to facilitate hole transportation for top-incident organic photovoltaic (TIOPV) devices. The deposition rate and thickness of the MoO3 layer were crucial parameters for determining the surface morphology and work function, and the internal optical field distribution, respectively. These factors affected the performance of the devices in terms of their open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF). The baseline TIOPV device without a buffer layer had a power conversion efficiency (PCE) of only 0.47%. By contrast, with a smooth 20-nm MoO3 buffer layer fabricated using a deposition rate of 1 Å/s (which prevented problems caused by the Ag anode), another fabricated TIOPV device had substantially higher VOC, JSC and FF values, which improved the PCE by a factor of 6.2 to 2.92%. When an additional 5-nm nanostructured MoO3 layer was deposited at a deposition rate of 0.5 Å/s, the most efficient TIOPV device had an even greater PCE, a factor of 7.5 times higher at 3.53%.


2005 ◽  
Vol 12 (01) ◽  
pp. 19-25 ◽  
Author(s):  
M. RUSOP ◽  
M. ADACHI ◽  
T. SOGA ◽  
T. JIMBO

Phosphorus-doped amorphous carbon (n-C:P) films were grown by r. f.-power-assisted plasma-enhanced chemical vapor deposition at room temperature using a novel solid red phosphorus target. The influence of phosphorus doping on material properties of n-C:P based on the results of simultaneous characterization are reported. Moreover, the solar cell properties such as series resistance, short circuit current density, open circuit current voltage, fill factor and conversion efficiency along with the spectral response are reported for the fabricated carbon-based n-C:P/p-Si heterojunction solar cell that was measured by standard measurement technique. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm 2, 25°C). The maximum of open-circuit voltage (V oc ) and short-circuit current density (J sc ) for the cells are observed to be approximately 236 V and 7.34, mAcm 2 respectively for the n-C:P/p-Si cell grown at lower r. f. power of 100 W. The highest energy conversion efficiency (η) and fill factor (FF) were found to be approximately 0.84% and 49%, respectively. We have observed that the rectifying nature of the heterojunction structures is due to the nature of n-C:P films.


1996 ◽  
Vol 426 ◽  
Author(s):  
W. Song ◽  
D. Mao ◽  
L. Feng ◽  
Y. Zhu ◽  
M. H. Aslan ◽  
...  

AbstractWe investigated the effect of CdCl2 treatment of CdS films on the photovoltaic performance of polycrystalline CdTe/CdS solar cells. X-ray diffraction studies indicated that the diffusion of S into CdTe is qualitatively the same for CdTe/CdS films fabricated with both as-deposited and CdCl2-treated CdS. A major difference was observed in the extent of Te diffusion into CdS for the two types of CdS films. Full conversion of CdS into CdS1-yTey; was observed for films prepared with asdeposited CdS, while the formation of the ternary phase was below the detection limit for films prepared with CdCl2-treated CdS. Photoluminescence measurements confirmed this result. The difference in interdiffusion leads to differences in optical transmission of CdS films and spectral response of CdTe/CdS solar cells. An increase of 2.7 mA/cm2 in short-circuit current density was observed as a result of improved spectral response in the wavelength range of 500–600 nm for the CdCl2-treated CdS.


2017 ◽  
Vol 17 (1) ◽  
pp. 13
Author(s):  
Shobih Shobih ◽  
Rizky Abdillah ◽  
Erlyta Septa Rosa

Hybrid polymer solar cell has privilege than its conventional structure, where it usually has structure of (ITO/PEDOT:PSS/Active Layer/Al). In humid environment the PEDOT:PSS will absorb water and hence can easily etch the ITO. Therefore it is necessary to use an alternative method to avoid this drawback and obtain more stable polymer solar cells, namely by using hybrid polymer solar cells structure with an inverted device architecture from the conventional, by reversing the nature of charge collection. In this paper we report the results of the fabrication of inverted bulk heterojunction polymer solar cells based on P3HT:PCBM as active layer, utilizing ZnO interlayer as buffer layer between the ITO and active layer with a stacked structure of ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag. The ZnO interlayer is formed through short route, i.e. by dissolving ZnO nanoparticles powder in chloroform-methanol solvent blend rather than by sol-gel process. Based on the measurement results on electrical characteristics of inverted polymer solar cells under 500 W/m2 illumination and AM 1.5 direct filter at room temperature, cell with annealing process of active layer at 110 °C for 10 minutes results in higher cell performance than without annealing, with an open-circuit voltage of 0.21 volt, a short-circuit current density of 1.33 mA/cm2 , a fill factor of 43.1%, and a power conversion efficiency of 0.22%. The low cell’s performance is caused by very rough surface of ZnO interlayer.


2020 ◽  
Vol 25 (1) ◽  
pp. 1-7
Author(s):  
Mohammed Sami Abd ali ◽  
Ahmed Shaker Hussein ◽  
Hayder Mohammed hadi

ABSTRACT:   In this work was measured characteristics (current - voltage) for the  (fe2o3 )thin films . The characteristics of the current density-voltage(J-V) were calculated at in both dark and light (100 mw/cm2) conditions. The parameters for this research of the photovoltaic samples, that is, were obtained directly from the curves of the resulting characteristics on the basic variables for the solar cell: the short circuit current density  (Jsc‏  ( ‏ , saturation current (Jo ), open-circuit voltage  (Voc) , fill factor ( FF), and efficiency of solar energy conversion (yield) ƞ ,


Author(s):  
Muneer H. Jadduaa ◽  
Nadir Fadhil Habubi ◽  
Alaa Z. Ckal

—In this study, (CdO) thin film, which was prepared by chemical method and deposited by drop casting technique on glass and silicon substrates have been studied . The structural, optical and chemical analysis were investigated. X-ray diffraction (XRD) measurements reveal that the (CdO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements assure that the energy gap of (CdO) thin film was found to be 2.5eV. I-V characterization of the solar cell under illumination at 40mW/cm2 fluence was investigated . The open circuit voltage (Voc) was 4.1V and short-circuit current density (Isc) was 1.44 mA. These measurements show that the fill factor (FF) and the conversion efficiency (η) ,were 36.2% and 6.8% respectively.


2015 ◽  
Vol 25 (2) ◽  
pp. 139
Author(s):  
Tran Thi Thao ◽  
Vu Thi Hai ◽  
Nguyen Nang Dinh ◽  
Le Dinh Trong

By using spin-coating technique, a low bandgap conjugated polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopen-ta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT)  and its composite thin films have been prepared. The optical absorption and photoconductive properties with over a wide spectral range, from 350 to 950  nm, were characterized. The obtained results showed that PCPDTBT:10 wt% CdSe  composite is the most suitable for efficient light-harvesting in polymer-based photovoltaic cells. The photoelectrical conversion efficiency (PCE) of the device with  a multilayer structure of ITO/PEDOT/ PCPDTBT:CdSe /LiF/Al  reached a value as large as 1.34% with an open-circuit voltage (Voc) = 0.57 V, a short-circuit current density (Jsc) = 4.29 mA/cm2, and a fill factor (FF) = 0.27. This suggests a useful application in further fabrication of quantum dots/polymers based solar cells.


Sign in / Sign up

Export Citation Format

Share Document