scholarly journals Low Multilinear Rank Approximation of Tensors and Application in Missing Traffic Data

2014 ◽  
Vol 6 ◽  
pp. 157597 ◽  
Author(s):  
Huachun Tan ◽  
Jianshuai Feng ◽  
Zhengdong Chen ◽  
Fan Yang ◽  
Wuhong Wang

The problem of missing data in multiway arrays (i.e., tensors) is common in many fields such as bibliographic data analysis, image processing, and computer vision. We consider the problems of approximating a tensor by another tensor with low multilinear rank in the presence of missing data and possibly reconstructing it (i.e., tensor completion). In this paper, we propose a weighted Tucker model which models only the known elements for capturing the latent structure of the data and reconstructing the missing elements. To treat the nonuniqueness of the proposed weighted Tucker model, a novel gradient descent algorithm based on a Grassmann manifold, which is termed Tucker weighted optimization (Tucker-Wopt), is proposed for guaranteeing the global convergence to a local minimum of the problem. Based on extensive experiments, Tucker-Wopt is shown to successfully reconstruct tensors with noise and up to 95% missing data. Furthermore, the experiments on traffic flow volume data demonstrate the usefulness of our algorithm on real-world application.

Author(s):  
Marco Mele ◽  
Cosimo Magazzino ◽  
Nicolas Schneider ◽  
Floriana Nicolai

AbstractAlthough the literature on the relationship between economic growth and CO2 emissions is extensive, the use of machine learning (ML) tools remains seminal. In this paper, we assess this nexus for Italy using innovative algorithms, with yearly data for the 1960–2017 period. We develop three distinct models: the batch gradient descent (BGD), the stochastic gradient descent (SGD), and the multilayer perceptron (MLP). Despite the phase of low Italian economic growth, results reveal that CO2 emissions increased in the predicting model. Compared to the observed statistical data, the algorithm shows a correlation between low growth and higher CO2 increase, which contradicts the main strand of literature. Based on this outcome, adequate policy recommendations are provided.


Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 165
Author(s):  
Shiqing Ma ◽  
Ping Yang ◽  
Boheng Lai ◽  
Chunxuan Su ◽  
Wang Zhao ◽  
...  

For a high-power slab solid-state laser, obtaining high output power and high output beam quality are the most important indicators. Adaptive optics systems can significantly improve beam qualities by compensating for the phase distortions of the laser beams. In this paper, we developed an improved algorithm called Adaptive Gradient Estimation Stochastic Parallel Gradient Descent (AGESPGD) algorithm for beam cleanup of a solid-state laser. A second-order gradient of the search point was introduced to modify the gradient estimation, and it was introduced with the adaptive gain coefficient method into the classical Stochastic Parallel Gradient Descent (SPGD) algorithm. The improved algorithm accelerates the search for convergence and prevents it from falling into a local extremum. Simulation and experimental results show that this method reduces the number of iterations by 40%, and the algorithm stability is also improved compared with the original SPGD method.


Sign in / Sign up

Export Citation Format

Share Document