scholarly journals Role of Rutin on Nitric Oxide Synthesis in Human Umbilical Vein Endothelial Cells

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Azizah Ugusman ◽  
Zaiton Zakaria ◽  
Kien Hui Chua ◽  
Nor Anita Megat Mohd Nordin ◽  
Zaleha Abdullah Mahdy

Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a major antiatherogenic factor in the blood vessel. Oxidative stress plays an important role in the pathogenesis of various cardiovascular diseases, including atherosclerosis. Decreased availability of endothelial NO promotes the progression of endothelial dysfunction and atherosclerosis. Rutin is a flavonoid with multiple cardiovascular protective effects. This study aimed to investigate the effects of rutin on eNOS and NO production in cultured human umbilical vein endothelial cells (HUVEC). HUVEC were divided into four groups: control; oxidative stress induction with 180 μM H2O2; treatment with 300 μM rutin; and concomitant induction with rutin and H2O2for 24 hours. HUVEC treated with rutin produced higher amount of NO compared to control (P<0.01). In the oxidative stress-induced HUVEC, rutin successfully induced cells’ NO production (P<0.01). Rutin promoted NO production in HUVEC by inducing eNOS gene expression (P<0.05), eNOS protein synthesis (P<0.01), and eNOS activity (P<0.05). Treatment with rutin also led to increased gene and protein expression of basic fibroblast growth factor (bFGF) in HUVEC. Therefore, upregulation of eNOS expression by rutin may be mediated by bFGF. The results showed that rutin may improve endothelial function by augmenting NO production in human endothelial cells.

2016 ◽  
Vol 71 (1-2) ◽  
pp. 21-28 ◽  
Author(s):  
Mi Hwa Park ◽  
Jae-Won Ju ◽  
Mihyang Kim ◽  
Ji-Sook Han

AbstractEndothelial cell dysfunction is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of daidzein, a natural isoflavonoid, against high-glucose–induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced oxidative stress in the endothelial cells, against which daidzein protected the cells as demonstrated by significantly increased cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS) generation, and indirect nitric oxide levels induced by the high glucose treatment were significantly reduced in the presence of daidzein (0.02–0.1 mM) in a dose-dependent manner. High glucose levels induced the overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB proteins in HUVECs, which was suppressed by treatment with 0.04 mM daidzein. These findings indicate the potential of daidzein to reduce high glucose-induced oxidative stress.


2011 ◽  
Vol 89 (6) ◽  
pp. 445-453 ◽  
Author(s):  
Tao Chen ◽  
Zai-pei Guo ◽  
Xiao-yan Jiao ◽  
Yu-hong Zhang ◽  
Jing-yi Li ◽  
...  

Peoniflorin (PF), extracted from the root of Paeonia lactiflora Pall., has been reported to have anti-inflammation and antioxidant effects in several animal models. Herein, we investigated the protective effects of PF against hydrogen peroxide (H2O2)-induced oxidative damage in human umbilical vein endothelial cells (HUVECs). HUVECs were treated by H2O2 (240 µmol/L) with or without PF. PF significantly increased the percent cell viability of HUVECs injured by H2O2 using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. By flow cytometric analysis, PF markedly attenuated H2O2-induced apoptosis and intracellular reactive oxygen species production. In addition, PF also displayed a dose-dependent reduction of lactate dehydrogenase leakage, malondialdehyde formation, and caspase-3 proteolytic activities in H2O2-treated cells, which was accompanied with a restoration of the activities of endogenous antioxidants, including total superoxide dismutase and glutathione peroxidase. Finally, Western blot data revealed that H2O2 upregulated phosphorylation of extracellular signal-regulated kinase 1/2 in HUVECs, which was almost completely reversed by PF. Taken together, our data provide the first evidence that PF has a protective ability against oxidative damage in HUVECs. PF may be a candidate medicine for the treatment of vascular diseases associated with oxidative stress.


2021 ◽  
Vol 14 (6) ◽  
pp. 577
Author(s):  
Chin-Feng Hsuan ◽  
Thung-Lip Lee ◽  
Wei-Kung Tseng ◽  
Chau-Chung Wu ◽  
Chi-Chang Chang ◽  
...  

The vascular nitric oxide (NO) system has a protective effect in atherosclerosis. NO is generated from the conversion of L-arginine to L-citrulline by the enzymatic action of endothelial NO synthase (eNOS). Compounds with the effect of enhancing eNOS expression are considered to be candidates for the prevention of atherosclerosis. In this study, extracts from the aerial, root, and whole plant of Glossogyne tenuifolia (GT) were obtained with ethanol, n-hexane, ethyl acetate (EA), and methanol extraction, respectively. The effects of these GT extracts on the synthesis of NO and the expression of eNOS in human umbilical vein endothelial cells (HUVECs) were investigated. NO production was determined as nitrite by colorimetry, following the Griess reaction. The treatment of HUVECs with EA extract from the root of GT and n-hexane, methanol, and ethanol extract from the aerial, root, and whole plant of GT increased NO production in a dose-dependent manner. When at a dose of 160 μg/mL, NO production increased from 0.9 to 18.4-fold. Among these extracts, the methanol extract from the root of GT (R/M GTE) exhibited the most potent effect on NO production (increased by 18.4-fold). Furthermore, using Western blot and RT–PCR analysis, treatment of HUVECs with the R/M GTE increased both eNOS protein and mRNA expression. In addition, Western blot analysis revealed that the R/M GTE increased eNOS phosphorylation at serine1177 as early as 15 min after treatment. The chemical composition for the main ingredients was also performed by HPLC analysis. In conclusion, the present study demonstrated that GT extracts increased NO production in HUVECs and that the R/M GTE increased NO production via increasing eNOS expression and activation by phosphorylation of eNOS at serine1177.


Sign in / Sign up

Export Citation Format

Share Document