scholarly journals Power Geometric Operators of Hesitant Multiplicative Fuzzy Numbers and Their Application to Multiple Attribute Group Decision Making

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Lei Wang ◽  
Mingfang Ni ◽  
Zhanke Yu ◽  
Lei Zhu

Multiplicative relations are one of most powerful techniques to express the preferences over alternatives (or criteria). In this paper, we propose a wide range of hesitant multiplicative fuzzy power aggregation geometric operators on multiattribute group decision making (MAGDM) problems for hesitant multiplicative information. In this paper, we first develop some compatibility measures for hesitant multiplicative fuzzy numbers, based on which the corresponding support measures can be obtained. Then we propose several aggregation techniques, and investigate their properties. In the end, we develop two approaches for multiple attribute group decision making with hesitant multiplicative fuzzy information and illustrate a real world example to show the behavior of the proposed operators.

2013 ◽  
Vol 19 (3) ◽  
pp. 377-396 ◽  
Author(s):  
Guiwu Wei ◽  
Xiaofei Zhao ◽  
Hongjun Wang ◽  
Rui Lin

The article investigates the multiple attribute group decision making (MAGDM) problems in which the attribute values take the form of triangular fuzzy information. Motivated by the ideal of power aggregation, in this paper some power aggregation operators for aggregating triangular fuzzy information are developed and then applied in order to develop some models for multiple attribute group decision making with triangular fuzzy information. Finally, some illustrative examples are given to verify the developed approach and to demonstrate its practicality and effectiveness.


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 383 ◽  
Author(s):  
Kaiyuan Bai ◽  
Xiaomin Zhu ◽  
Jun Wang ◽  
Runtong Zhang

In respect to the multi-attribute group decision making (MAGDM) problems in which the evaluated value of each attribute is in the form of q-rung orthopair fuzzy numbers (q-ROFNs), a new approach of MAGDM is developed. Firstly, a new aggregation operator, called the partitioned Maclaurin symmetric mean (PMSM) operator, is proposed to deal with the situations where the attributes are partitioned into different parts and there are interrelationships among multiple attributes in same part whereas the attributes in different parts are not related. Some desirable properties of PMSM are investigated. Then, in order to aggregate the q-rung orthopair fuzzy information, the PMSM is extended to q-rung orthopair fuzzy sets (q-ROFSs) and two q-rung orthopair fuzzy partitioned Maclaurin symmetric mean (q-ROFPMSM) operators are developed. To eliminate the negative influence of unreasonable evaluation values of attributes on aggregated result, we further propose two q-rung orthopair fuzzy power partitioned Maclaurin symmetric mean (q-ROFPPMSM) operators, which combine the PMSM with the power average (PA) operator within q-ROFSs. Finally, a numerical instance is provided to illustrate the proposed approach and a comparative analysis is conducted to demonstrate the advantage of the proposed approach.


2012 ◽  
Vol 18 (2) ◽  
pp. 317-330 ◽  
Author(s):  
Guiwu Wei ◽  
Xiaofei Zhao ◽  
Hongjun Wang

In this paper, we investigate the multiple attribute group decision making (MAGDM) problems in which both the attribute weights and the expert weights take the form of real numbers, attribute values take the form of interval intuitionistic trapezoidal fuzzy numbers. Firstly, some operational laws of interval intuitionistic trapezoidal fuzzy numbers are introduced. Then some new aggregation operators including interval intuitionistic trapezoidal fuzzy ordered weighted geometric (IITFOWG) operator and interval intuitionistic trapezoidal fuzzy hybrid geometric (IITFHG) operator are proposed and some desirable properties of these operators are studied, such as commutativity, idempotency and monotonicity. An IITFWG and IITFHG operators-based approach is developed to solve the MAGDM problems in which both the attribute weights and the expert weights take the form of real numbers and attribute values take the form of interval intuitionistic trapezoidal fuzzy numbers. Finally, some illustrative examples are given to verify the developed approach and to demonstrate its practicality and effectiveness.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Sireesha Veeramachaneni ◽  
Himabindu Kandikonda

The Multiple Criteria Decision Making (MCDM) is acknowledged as the most useful branch of decision making. It provides an effective framework for comparison based on the evaluation of multiple conflicting criteria. In this paper, a method is proposed to work out multiple attribute group decision making (MAGDM) problems with interval-valued intuitionistic trapezoidal fuzzy numbers (IVITFNs) using Elimination and Choice Translation Reality (ELECTRE) method. A new ranking function based on value and ambiguity is introduced to compare the IVITFNs, which overcomes the limitations of existing methods. An illustrative numerical example is solved to verify the efficiency of the proposed method to select the better alternative.


2021 ◽  
pp. 1-16
Author(s):  
Ningna Liao ◽  
Hui Gao ◽  
Guiwu Wei ◽  
Xudong Chen

Facing with a sea of fuzzy information, decision makers always feel it difficult to select the optimal alternatives. Probabilistic hesitant fuzzy sets (PHFs) utilize the possible numbers and the possible membership degrees to describe the behavior of the decision makers. though this environment has been introduced to solve problems using different methods, this circumstance can still be explored by using different method. This paper’ s aim is to develop the MABAC (Multi-Attributive Border Approximation area Comparison) decision-making method which based on cumulative prospect theory (CPT) in probabilistic hesitant fuzzy environment to handle multiple attributes group decision making (MAGDM) problems. Then the weighting vector of attributes can be calculated by the method of entropy. Then, in order to show the applicability of the proposed method, it is validated by a case study for buying a house. Finally, through comparing the outcome of comparative analysis, we conclude that this designed method is acceptable.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 486 ◽  
Author(s):  
Jie Wang ◽  
Guiwu Wei ◽  
Mao Lu

In this article, we extend the original TODIM (Portuguese acronym for Interactive Multi-Criteria Decision Making) method to the 2-tuple linguistic neutrosophic fuzzy environment to propose the 2TLNNs TODIM method. In the extended method, we use 2-tuple linguistic neutrosophic numbers (2TLNNs) to present the criteria values in multiple attribute group decision making (MAGDM) problems. Firstly, we briefly introduce the definition, operational laws, some aggregation operators and the distance calculating method of 2TLNNs. Then, the calculation steps of the original TODIM model are presented in simplified form. Thereafter, we extend the original TODIM model to the 2TLNNs environment to build the 2TLNNs TODIM model, our proposed method, which is more reasonable and scientific in considering the subjectivity of DM’s behaviors and the dominance of each alternative over others. Finally, a numerical example for the safety assessment of a construction project is proposed to illustrate the new method, and some comparisons are also conducted to further illustrate the advantages of the new method.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 505 ◽  
Author(s):  
Zengxian Li ◽  
Guiwu Wei ◽  
Mao Lu

In this paper, we extend the Hamy mean (HM) operator and dual Hamy mean (DHM) operator with Pythagorean fuzzy numbers (PFNs) to propose Pythagorean fuzzy Hamy mean (PFHM) operator, weighted Pythagorean fuzzy Hamy mean (WPFHM) operator, Pythagorean fuzzy dual Hamy mean (PFDHM) operator, weighted Pythagorean fuzzy dual Hamy mean (WPFDHM) operator. Then the multiple attribute group decision making (MAGDM) methods are proposed with these operators. In the end, we utilize an applicable example for supplier selection to prove the proposed methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Sidong Xian

With respect to multiple attribute group decision making (MAGDM) problems, in which the attribute weights take the form of real numbers, and the attribute values take the form of fuzzy linguistic scale variables, a decision analysis approach is proposed. In this paper, we develop a new fuzzy linguistic induce OWA (FLIOWA) operator and analyze the properties of it by utilizing some operational laws of fuzzy linguistic scale variables. A method based on the FLIOWA operators for multiple attribute group decision making is presented. Finally, a numerical example is used to illustrate the applicability and effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document