scholarly journals Miniaturized High-Isolation Dual-Frequency Orthogonally Polarized Patch Antenna Using Compact Electromagnetic Bandgap Filters

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chunxia Cheng ◽  
Fushun Zhang ◽  
Yangtao Wan ◽  
Fan Zhang

A miniaturized dual-frequency dual-polarization microstrip patch antenna with high isolation between receiving and transmitting ports (operating at 2.1 GHz for receiving and at 2.5 GHz for transmitting) is presented in this paper. The proposed antenna consists of a modified rectangular radiating patch, two 50 Ω microstrip feed lines, and two EBG filters. Two coupling microstrip lines are employed to excite two orthogonal fundamental modes (TM10and TM01). The high isolation is achieved by embedding two novel EBG filters underneath two feed lines to reject the incoming signal from the opposite line. Multilayer configuration, miniaturized EBG filters, and modified rectangular radiation patch contribute to size reduction. The total size is 0.67λ × 0.67λ × 0.03λ , only quarter of the multilayer rectangular radiation patch antenna (1.33λ × 1.33λ × 0.03λ) using common EBG filters with the same performance. Measured results on the reflection coefficients, isolations, and gains for the two frequencies are provided, which agree well with the numerical simulations. Also, measured isolations and radiation patterns at both two resonant frequencies are compared with the antenna without filters. The results show that the proposed method improves isolation by more than 20 dB with little influence on the radiation patterns.

Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 321-330 ◽  
Author(s):  
Manisha Gupta ◽  
Vinita Mathur ◽  
Arun Kumar ◽  
Virendra Saxena ◽  
Deepak Bhatnagar

Abstract Novel and miniaturized hexagonal Microstrip patch antenna design is presented in this paper. Patch is fractured using Sierpinski and Koch structures to make the antenna applicable for multiband applications. Additionally ground is defected to enhance the bandwidth and further size is reduced. Material FR-4 (εr = 4.4)has been chosen to design proposed antenna and substrate thickness as 1.59 mm. Microstrip feed technique is used as it provides better results. Gain obtained in this case is 5.57 dB, 7.49 dB and 4.02 dB with bandwidth as 606.8 MHz, 507 MHz and 2 GHz at 8.3 GHz, 12.6 GHz and 17.6 GHz resonant frequencies. The antenna is better to other designs in terms of parameters like bandwidth, directivity, polarization, gain, return loss and dimension. The antenna provides application for military appliances. A good concord is obtained in Simulated and measured results.


A microstrip patch antenna is low profile antenna mounted over a high impedance electromagnetic bandgap (EBG) substrate is proposed. In this paper, Microstrip patch antenna with rectangular EBG structure is proposed and studied. The proposed antenna has compact structure with a total size of 29.44x38.036mm2 . The designed antenna resonates at Particular Single frequency with improved return loss, VSWR and gain. The resonant frequency of the antenna 2.4GHz without and with EBG and improved return loss of -17.61dB and -18.30dB. With rectangular EBG the antenna gives improved gain of 2.09 dB. The Proposed antenna is simulated by using Simulation software ie.(IE3D) and simulated results are in good with practical antenna characteristics.


Sign in / Sign up

Export Citation Format

Share Document