Microstrip Hexagonal Fractal Antenna for Military Applications

Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 321-330 ◽  
Author(s):  
Manisha Gupta ◽  
Vinita Mathur ◽  
Arun Kumar ◽  
Virendra Saxena ◽  
Deepak Bhatnagar

Abstract Novel and miniaturized hexagonal Microstrip patch antenna design is presented in this paper. Patch is fractured using Sierpinski and Koch structures to make the antenna applicable for multiband applications. Additionally ground is defected to enhance the bandwidth and further size is reduced. Material FR-4 (εr = 4.4)has been chosen to design proposed antenna and substrate thickness as 1.59 mm. Microstrip feed technique is used as it provides better results. Gain obtained in this case is 5.57 dB, 7.49 dB and 4.02 dB with bandwidth as 606.8 MHz, 507 MHz and 2 GHz at 8.3 GHz, 12.6 GHz and 17.6 GHz resonant frequencies. The antenna is better to other designs in terms of parameters like bandwidth, directivity, polarization, gain, return loss and dimension. The antenna provides application for military appliances. A good concord is obtained in Simulated and measured results.

2013 ◽  
Vol 706-708 ◽  
pp. 64-68 ◽  
Author(s):  
Zhao Xian Xiong ◽  
Guo Feng Zhang ◽  
Hao Xue ◽  
Jin Bao Huang ◽  
Qiang Zheng ◽  
...  

τMicrowave dielectric properties of 0.95MgTiO3-0.05CaTiO3 ceramics and their performances as H-shaped microstrip patch antenna were investigated. Best values of dielectric constant (εr) and quality factor (Q×f) of 19.00 and 66800GHz, respectively, were obtained for the microwave ceramics sintered at 1300°C for 3h. A near-zero temperature coefficient of resonant frequency (τf) of -4.7ppm/°C was obtained for the ceramics with sintering 1280°C for 3h. A new kind of H-shaped microstrip patch antenna with two resonant frequencies was fabricated by using of this kind of ceramics as antenna substrate. The return loss bandwidth of the patch antenna was extended with the increasing of substrate thickness at both resonant frequencies of the antennas, around 1.530GHz and 2.750GHz, respectively.


Author(s):  
Priyanka Jain ◽  
Raghavendra Sharma ◽  
Vandana Vikas Thakre

In this proposed design a Rectangular E shaped micro-strip patch antenna is present with rectangular and circular slot within the Rectangular patch which operate at frequency 2.4 GHz. By proposed antenna design and coaxial feeding at suitable place  the resultant return loss, VSWR and bandwidth will be find out. For the propose microstrip antenna we have use FR-4 substrate which contain permittivity of 4.4 and thickness 1.5, loss tangent is 0.02. HFSS simulation software is used for designing and analysis.


Author(s):  
Brijesh Kumar Soni ◽  
Kamaljeet Singh ◽  
Amit Rathi ◽  
Sandeep Sancheti

In recent times rectangular patch antenna design has become the most innovative and popular subject due to its advantages, such as being lightweight, conformal, ease to fabricate, low cost and small size. In this paper design of aperture coupled microstrip patch antenna (MSA) on high index semiconductor material coupled with micromachining technique for performance enhancement is discussed. The performance in terms of return loss bandwidth, gain, cross-polarization and antenna efficiency is compared with standard aperture coupled antenna. Micromachining underneath of the patch helps in to reduce the effective dielectric constant, which is desirable for the radiation characteristics of the patch antenna. Improvement 36 percent and 18 percent in return loss bandwidth and gain respectively achieved using micromachined aperture coupled feed patch, which is due to the reduction in losses, suppression of surface waves and substrate modes. In this article along with design, fabrication aspects on Si substrate using MEMS process also discussed. Presented antenna design is proposed antenna can be useful in smart antenna arrays suitable in satellite, radar communication applications. Two topologies at X-band are fabricated and comparison between aperture coupled and micromachined aperture coupled are presented. Index Terms—Microstrip Patch Antenna, Aperture Coupled, Micromachining, High Resistivity Silicon


2020 ◽  
Vol 6 (5) ◽  
pp. 1-5
Author(s):  
Rovin Tiwari ◽  
Raghavendra Sharma ◽  
Rahul Dubey

A research on Antenna design and simulation is a emerging area among researchers. Antenna is a basic element for wireless communication. There are various shaps and types of antenna, which uses in different allpication. Now a days Microstrip patch anteena is very useful in advance electronics devices applications. This paper focused on study based various types of microstrip antenna. Return loss, VSWR, bandwidth, resonant frequency and gain is key parameters to judge antenna performance. Good value of return loss is less than -10dB. Considerable range of VSWR is 1-2. CST microwave studio is a advance software to design and simulation of all types of antenna, filter etc.


Author(s):  
Neha Afreen

Abstract: In the present work an attempt has been made to design and simulation of rectangular microstrip patch antenna with triple slot for X band using microstrip feed line techniques. HFSS High frequency simulator is used to analyse the proposed antenna and simulated the result on the return loss, radiation pattern and gain of the proposed antenna. The antenna is able to achieve in the range of 8-12 GHz for return loss of less than -10 dB. The operating frequency of the proposed antenna is 8.4 GHz & 11 GHz with dielectric substrate, ARLON of = 2.5 and h= 1.6mm. Keywords: ARLON substrate material, FEM, Microstrip Feed Line, X band


This paper presents the prototype and simulations of a compact rectangular microstrip patch antenna for ultra-wideband applications. The proposed antenna is printed on FR4 (Flame Retardant) substrate with relative permittivity of 4.4, dielectric loss tangent of 0.0024 and the dimensions of 57 × 25 × 1.57 mm3 . The radiating patch of the antenna is loaded with two rectangular stubs along its upper and lower edges and an equilateral triangular notch is truncated from the reduced ground plane to achieve optimum results in terms of bandwidth and reflection coefficient. It is fed along the centerline of symmetry by 50Ω microstrip feed line. The simulated return loss ( ) characteristics show that the proposed antenna has a capability of covering the wireless bands from 0.17GHz to 7.25GHz with impedance bandwidth of 7.08GHz and exhibits a peak gain of 5dB at 7.25GHz which is acceptable for UWB systems.


Author(s):  
Dawit Fistum

<p>This paper presents an efficient proximity coupled feed rectangular microstrip patch antenna with reduced harmonic radiation. The proposed antenna resonates in S-band at frequency of 2.45 GHz with bandwidth of 88.5 MHz. A very good return loss of -47.0546 dB is obtained for the Microstrip patch antenna. The antenna matching can be achieved with an appropriate line-patch overlap, but with a careful design consideration. Not only the good matching of the fundamental mode, but also the effect on the harmonic radiation from the other patch modes has been considered. Varying the length &amp; location of the microstrip feed line and introducing a defect in the ground plane- the harmonic radiation from the other patch mode is reduced to minimum.</p>


2015 ◽  
Vol 781 ◽  
pp. 28-31
Author(s):  
Amira Abd Rohim ◽  
Muhammad Ramlee Kamarudin ◽  
M.T. Ali

A microstrip patch antenna for RFID reader is presented in this paper. It operates within the RFID international UHF band (902-928MHz) which the center frequency is at 915MHz with 15dB of return loss value. The frequency ranges also cover the RFID UHF band for Malaysia (912-923MHz). The main objective for this antenna is to implement it in the RFID reader for an auto payment application. Some results have been shown between CST Microwave Studio, HFSS and the measurement. Good agreement is achieved for the used in the RFID UHF band.


2019 ◽  
Vol 2 (3) ◽  
pp. 711-719
Author(s):  
Abdurrahim Erat

This paper presents the design and simulation of a microstrip patch antenna (MPA) which is modeled by placing several rectangular copper layer with conductive characteristics on a substrate material with dielectric constant 3.0 and 22x18x1 mm3 geometry. This microstrip path was designed with copper material which had a very thin thickness for patch and ground. In this study, a change in resonance frequency and return loss characteristics were observed for several substrate thickness values. The radiation characteristics of the single and dual band microstrip patch antennas (MPAs) are analysed in the frequency range of 5 &amp;ndash; 25 GHz. The microstrip patch antenna (MPA) radiate at a frequency of 15.32 GHz with -45 dB return loss. For the designed single and dual band MPA design, some electromagnetic properties such as return loss, surface current and radiation patterns were simulated. The characteristic of goods and chattels of the proposed antenna are analyzed by using the software CST Microwave Studio.


Sign in / Sign up

Export Citation Format

Share Document