scholarly journals The Modification of Polyurethane Foams Using New Boroorganic Polyols: Obtaining of Polyols with the Use of Hydroxypropyl Urea Derivatives

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Iwona Zarzyka

Methods of synthesis of new prospective polyol components for obtaining of polyurethane foams of reduced combustibility using eco-friendly substrates have been presented. With this end in view, N,N′-bis(2-hydroxypropyl)urea was esterified with boric acid and next the hydrogenborate obtained was hydroxyalkylated by the excess of propylene carbonate. The influence of the way of esterification on the hydroxypropyl derivatives of borate substituted urea properties has been investigated. Esterification was run in the presence and in the absence of solvent. According to instrumental analysis, the characteristic of hydrogenborates obtained in both methods was found to be similar. The hydroxypropyl derivatives of borate substituted urea show similar spectral characteristics and thermal stabilities and differ slightly in molar masses, by-product contents, and physical properties, particularly viscosities. The properties of these derivatives were assessed paying special attention to their application as the polyol components of polyurethane foams. Hydroxypropyl urea derivatives, modified by boric acid, show changes in physical properties with temperature, similarly to typical polyols used for obtaining of polyurethane foams.

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Iwona Zarzyka

The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams’ properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Iwona Zarzyka

Abstract The results of esterification of N,N'-bis(2-hydroxypropyl)oxamide (BHPOD) with the use of boric acid (BA) have been described. Subsequently hydroxypropyl derivatives of oxamide (OD) modified with boron as products of the reaction of BHPOD esterified boric acid with an excess of propylene carbonate (PC) have been obtained. Foamed polyurethane materials received with the use of these derivatives as polyol components and diisocyanate 4,4'-diphenylmethane exhibited higher thermal stability and compressive strength compared to the foams obtained with hydroxypropyl derivatives of OD which do not contain boron.


2007 ◽  
Vol 48 (13) ◽  
pp. 2283-2285 ◽  
Author(s):  
Devarajan Suresh ◽  
Maravanji S. Balakrishna ◽  
Joel T. Mague

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Iwona Zarzyka-Niemiec

AbstractThe reaction between urea and ethylene carbonate occur with partial release of CO2 and partial incorporation of carbonate groups into products. The carbonate groups were found to be attached both to nitrogen of urea and to oxyethylene chain. The most effective catalyst of the synthesis was potassium carbonate. The hydroxyethyl and hydroxyethoxy groups of urea derivatives undergo partial dimerization to form carbamate groups in the products. The products of reaction between urea and ethylene carbonate have good thermal stability, they start to decompose at 200°C. The obtained products can be used as polyol components for polyurethane foams. Polyurethane foams obtained from hydroxyethoxy derivatives of urea (EC8) are rigid products of low water uptake, good stability of dimensions, low mass loss on 30 days heating at 150°C, enhanced thermal stability and good compressive strength.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Iwona Zarzyka-Niemiec ◽  
Katarzyna Rydel

AbstractThe products of hydroxyalkylation of N,N’-bis(2-hydroxypropyl)urea (BHPU) with large molar excess of propylene carbonate (PC) posses enhanced thermal stability. These products and 4,4’-diphenylmethane diisocyanate were used as substrates for obtaining rigid polyurethane foams, which had high thermal stability and low water uptake.


2020 ◽  
Vol 97 ◽  
pp. 103708
Author(s):  
Nagalakshmamma Vadabingi ◽  
Vijaya Kumar Reddy Avula ◽  
Grigory V. Zyryanov ◽  
Swetha Vallela ◽  
Jaya Shree Anireddy ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Iwona Zarzyka-Niemiec

-bis(2-hydroxyethyl)oxalamide (BHEOA) was subject to hydroxyalkylation with ethylene carbonate (EC). By means of instrumental methods (IR, -NMR, MALDI ToF, GC, and GC-MS), an influence of the reaction conditions on structure and compositions of the obtained products was investigated. The hydroxyalkyl and hydroxyalkoxy derivatives of oxalamide (OA) were obtained by reaction of BHEOA with 2–10-molar excess of ethylene carbonate (EC, 1,3-dioxolane-2-one). The products have a good thermal stability and possess suitable physical properties as substrates for foamed polyurethanes. The obtained products were used in manufacturing the rigid polyurethane foams which possess enhanced thermal stability and good mechanical properties.


1982 ◽  
Vol 85 (1) ◽  
pp. 257-263 ◽  
Author(s):  
A. Graja ◽  
M. Przybylski ◽  
B. Butka ◽  
R. Swietlik

Sign in / Sign up

Export Citation Format

Share Document