Preparation and properties of polyurethane foams from hydroxypropoxy derivatives of urea and isocyanates

e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Iwona Zarzyka-Niemiec ◽  
Katarzyna Rydel

AbstractThe products of hydroxyalkylation of N,N’-bis(2-hydroxypropyl)urea (BHPU) with large molar excess of propylene carbonate (PC) posses enhanced thermal stability. These products and 4,4’-diphenylmethane diisocyanate were used as substrates for obtaining rigid polyurethane foams, which had high thermal stability and low water uptake.

2020 ◽  
pp. 0021955X2094309
Author(s):  
Iwona Zarzyka ◽  
Tomasz Pacześniak ◽  
Wiesław Frącz

In this work the results of the research on modification of rigid polyurethane foams properties by new polyols with borate and oxamide groups have been presented. Propylene glycols — the products of hydroxyalkylation of N,N′-bis(2-hydroxypropyl)oxamide bis(dihydrogenborate) by excess of propylene carbonate (PC) was used as a polyol component. The new polyols have been foamed using polymeric 4,4′-diphenylmethane diisocyanate, water and triethylamine. The modification of the foam structure by oxamide and borate groups guarantees their low water uptake, very good heat-insulating properties, good dimension stability and decreases their flammability, and does not worsen their mechanical properties and thermal stability.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Iwona Zarzyka-Niemiec

AbstractReaction products of Oxalamide (OD) with a 8- and 12-molar excess of ethylene carbonate (EC) and propylene carbonate (PC), characterized by an enhanced thermal stability due to the presence of Oxalamide arrangement, were used as polyol components for obtaining foamed polyurethane plastics. As an isocyanate agent diphenylmethane-4,4’-diisocyanate was used. The obtained new foamed polyurethane plastics are characterized by a slight water uptake, good stability of dimensions and an enhanced thermal stability.


2018 ◽  
Vol 54 (4) ◽  
pp. 719-741 ◽  
Author(s):  
Iwona Zarzyka ◽  
Anita Bialkowska ◽  
Tomasz Paczesniak ◽  
Wieslaw Fracz ◽  
Dorota Majda

In this work, the research results of the synthesis and properties of the polyols with the oxamidoester group, obtained in the reaction of N-substituted morpholine-2,3-dione derivatives with excess of alkylene carbonates have been presented. Using these derivatives as polyol components, rigid foamed polyurethane materials of high thermal stability and mechanical strength have been obtained. New polyurethane foams obtained using hydroxypropyl morpholine-2,3-dione derivatives can be used as heat-insulating materials of operating temperature as high as 150°C.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Iwona Zarzyka

Abstract The results of esterification of N,N'-bis(2-hydroxypropyl)oxamide (BHPOD) with the use of boric acid (BA) have been described. Subsequently hydroxypropyl derivatives of oxamide (OD) modified with boron as products of the reaction of BHPOD esterified boric acid with an excess of propylene carbonate (PC) have been obtained. Foamed polyurethane materials received with the use of these derivatives as polyol components and diisocyanate 4,4'-diphenylmethane exhibited higher thermal stability and compressive strength compared to the foams obtained with hydroxypropyl derivatives of OD which do not contain boron.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Iwona Zarzyka-Niemiec

-bis(2-hydroxyethyl)oxalamide (BHEOA) was subject to hydroxyalkylation with ethylene carbonate (EC). By means of instrumental methods (IR, -NMR, MALDI ToF, GC, and GC-MS), an influence of the reaction conditions on structure and compositions of the obtained products was investigated. The hydroxyalkyl and hydroxyalkoxy derivatives of oxalamide (OA) were obtained by reaction of BHEOA with 2–10-molar excess of ethylene carbonate (EC, 1,3-dioxolane-2-one). The products have a good thermal stability and possess suitable physical properties as substrates for foamed polyurethanes. The obtained products were used in manufacturing the rigid polyurethane foams which possess enhanced thermal stability and good mechanical properties.


2019 ◽  
Vol 17 (1) ◽  
pp. 1080-1086
Author(s):  
Elżbieta Chmiel-Szukiewicz

AbstractSyntheses of oligoetherols with a 1,3-pyrimidine ring and boron atoms using 6-aminouracil, ethylene carbonate and boric acid has been proposed. The structure of the obtained products were determined by instrumental methods (IR, 1H-NMR and MALDI-ToF spectra). The physicochemical and thermal properties of oligoetherols were examined. The products were characterized by high thermal stability. Based on the tests performed, it was found that oligoetherols obtained from 6-aminouracil, boric acid and ethylene carbonate are suitable for the manufacturing of polyurethane foams with improved thermal stability and reduced flammability.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5616
Author(s):  
Katarzyna Uram ◽  
Maria Kurańska ◽  
Jacek Andrzejewski ◽  
Aleksander Prociak

This paper presents results of research on the preparation of biochar-modified rigid polyurethane foams that could be successfully used as thermal insulation materials. The biochar was introduced into polyurethane systems in an amount of up to 20 wt.%. As a result, foam cells became elongated in the direction of foam growth and their cross-sectional areas decreased. The filler-containing systems exhibited a reduction in their apparent densities of up to 20% compared to the unfilled system while maintaining a thermal conductivity of 25 mW/m·K. Biochar in rigid polyurethane foams improved their dimensional and thermal stability.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Iwona Zarzyka

The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams’ properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Iwona Zarzyka

Methods of synthesis of new prospective polyol components for obtaining of polyurethane foams of reduced combustibility using eco-friendly substrates have been presented. With this end in view, N,N′-bis(2-hydroxypropyl)urea was esterified with boric acid and next the hydrogenborate obtained was hydroxyalkylated by the excess of propylene carbonate. The influence of the way of esterification on the hydroxypropyl derivatives of borate substituted urea properties has been investigated. Esterification was run in the presence and in the absence of solvent. According to instrumental analysis, the characteristic of hydrogenborates obtained in both methods was found to be similar. The hydroxypropyl derivatives of borate substituted urea show similar spectral characteristics and thermal stabilities and differ slightly in molar masses, by-product contents, and physical properties, particularly viscosities. The properties of these derivatives were assessed paying special attention to their application as the polyol components of polyurethane foams. Hydroxypropyl urea derivatives, modified by boric acid, show changes in physical properties with temperature, similarly to typical polyols used for obtaining of polyurethane foams.


Sign in / Sign up

Export Citation Format

Share Document