scholarly journals Response of Soybean to Early-Season Planting Dates along the Upper Texas Gulf Coast

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
W. James Grichar ◽  
Stephen P. Biles

Soybeans (Glycine maxL.) can be planted along the upper Texas Gulf Coast from mid-March through May to take advantage of early season rains and to complete harvest before hurricane season and fall rains become a problem. However, in the Calhoun County area (28.5° north latitude), these planting dates have resulted in below average yields and reasons for these yield reductions are not clear. To determine if earlier planting dates could be an option to eliminate the low yields, field studies were conducted from 2005 through 2010 in Calhoun County, Texas, to determine soybean cultivar response to planting dates which ranged from mid-February through the last of April. Typically, soil temperatures in this area are above 18°C in mid-February and depending on weather patterns may not fall much lower during any time in the early portion of the growing season. The greatest yield was obtained with the mid-February and mid-March planting dates compared with early- or late-April planting dates. Typically, as planting date was delayed, the interval between planting and harvest decreased.

1998 ◽  
Vol 12 (4) ◽  
pp. 677-683 ◽  
Author(s):  
José A. Noldin ◽  
James M. Chandler ◽  
Garry N. McCauley ◽  
John W. Sij

Field studies were conducted from 1992 to 1994 to evaluate herbicides applied preplant incorporated (PPI), preemergence (PRE), and postemergence (POST) for red rice andEchinochloaspp. control in soybean. Metolachlor PPI at 3.4 kg ai/ha controlled red rice late season 90 to 92%. Alachlor at 4.5 kg ai/ha and SAN 582H at 2.2 or 3.4 kg ai/ha, PPI or PRE, metolachlor plus imazaquin at 2.8 + 0.14 kg ai/ha PRE, and quizalofop-P POST at 0.07 kg ai/ha provided 83 to 95% red rice control in at least 2 of 3 yr. The addition of imazaquin to metolachlor or pendimethalin did not improve red rice control. Early-seasonEchinochloaspp. control with trifluralin, pendimethalin, and pendimethalin + imazaquin applied PPI; metolachlor, SAN 582H at 2.2 or 3.4 kg/ha, and metolachlor + imazaquin applied PPI or PRE; alachlor, AC 263,222 + imazaquin, and AC 263,222 + imazethapyr applied PRE; and sethoxydim and quizalofop-P applied POST was 90 to 100% in at least 2 of 3 yr. However,Echinochloaspp. control decreased for all treatments later in the season. Pendimethalin applied PPI at 2.2 kg ai/ha or in mixture with imazaquin at 1.7 + 0.14 kg ai/ha injured soybean 14 to 34% in 2 yr. Trifluralin PPI, SAN 582H at 2.2 or 3.4 kg/ha PPI or PRE, imazaquin PPI, metolachlor + imazaquin PPI or PRE, and AC 263,222 + imazethapyr injured soybean 12 to 41% in at least 1 of 3 yr.


Author(s):  
Kevin M. Fitzpatrick ◽  
Matthew L. Spialek

Early June begins the Southern Hemisphere hurricane season. Stretching into November, it can often be a time of weary waiting and cautious optimism for coastal residents. Clear skies and calm seas can quickly give way to disaster. On August 27, 2017, a Category 4 hurricane (Harvey), targeting the Texas Gulf Coast and packing winds of over 130 miles per hour, wreaked havoc and created a path of destruction with bands of rain that seemingly went on forever. Lives were lost, neighborhoods devastated, resiliency cracked; yet people continued helping each other, and the recovery process began. Fitzpatrick and Spialek tell a complicated story of heartache, destruction, resiliency, recovery, and hope. Through over 300 interviews from Hurricane Harvey survivors living along the Texas Gulf Coast, their stories tell an all-too-familiar tale. Interviewing survivors with diverse displacement experiences, the authors create a narrative around who, what, where, and why residents sought refuge in shelters, hotels, and other alternative locations. Some residents have since moved back. Others have been rebuilding for months and even years. And there are some residents who will never return home. Their stories, circumstances, and insight into the recovery processes are all very different, yet intimately tied together through an understanding of how race and place come to define their experiences. This book tells survivors’ stories while emphasizing that who those survivors were and where they lived had a major impact on these tales of destruction, resiliency, and recovery.


Weed Science ◽  
1981 ◽  
Vol 29 (5) ◽  
pp. 610-615 ◽  
Author(s):  
T. R. Murphy ◽  
B. J. Gossett

Field studies were conducted at Florence and Clemson, South Carolina to measure the influence of soybean [Glycine max(L.) Merr.] planting dates on the length of early-season weed control needed to prevent yield reductions, the rate of shade development, and suppression of annual weeds by soybeans. The rate of shade development was similar for both planting dates during the 9- to 11-week period after planting for Florence and Clemson, respectively. The period of weed-free maintenance required to prevent soybean yield reductions was not affected by planting dates. With cultivation between rows, early- and late-planted soybeans required 3 weeks of weed-free maintenance to achieve maximum yields. Lower weed weights resulted from late than early soybean plantings. At Clemson, 3 weeks of weed-free maintenance for early and late plantings reduced weed weights 97 and 91%, respectively. Weed weights at Florence were reduced 85% with 3 weeks of weed-free maintenance for the late plantings, whereas 5 weeks were required to reduce weed weights 88% for early plantings.


2006 ◽  
Vol 20 (3) ◽  
pp. 633-639 ◽  
Author(s):  
W. James Grichar

Field studies were conducted at four locations over a 2-year period to evaluate the utility of soil-applied herbicides and glyphosate timing for weed control and soybean yield. Pendimethalin,S-metolachlor plus metribuzin, and flufenacet plus metribuzin were applied pre-emergence (PRE) alone or followed by glyphosate applied early postemergence (EPOST), late postemergence (LPOST), or EPOST plus LPOST. Soil-applied herbicides or glyphosate alone failed to control (<45%) broadleaf signalgrass in 2003 due to late-season rainfall, which accounted for a late flush of growth. In 2004, soil-applied herbicides alone controlled 79–100% broadleaf signalgrass, whereas glyphosate alone or in combination with soil-applied herbicides controlled at least 99%. Barnyardgrass and tall waterhemp were controlled at least 87% with soil-applied herbicides alone and at least 95% when glyphosate was used alone or in combination with a soil-applied herbicide. Soybean yield varied, but at only one location did herbicide treatments produce higher yields than the untreated check. Under low to moderate weed pressure, the use of a soil-applied herbicide followed by glyphosate failed to increase net returns over soil-applied herbicides alone.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
W. J. Grichar ◽  
S. Biles ◽  
J. D. Janak ◽  
P. McGuill

Soybeans (Glycine max) can be planted along the upper Texas Gulf Coast from mid-March through May to take advantage of early season rains and to complete harvest before hurricane season and fall rains become a problem. When average to above average rainfall was received in May through July, yields were greater with the early April to mid-April planting; however, under high rainfall conditions throughout the season, the mid-April to early May planting produced the highest yields, with yields of over 4000 kg/ha. When rainfall was below normal, late March to early April plantings produced the greatest yields. When rainfall was above average, soybeans took longer to reach harvestability regardless of cultivar or plant dates, while under drought conditions the interval between planting and harvest was reduced. However, when planting was delayed, there was a greater risk of detrimental late-season effects from southern green stink bug (Nezara viridula) or the brown stink bug (Euschistus heros).


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Dan D. Fromme ◽  
Trey Price ◽  
Josh Lofton ◽  
Tom Isakeit ◽  
Ronnie Schnell ◽  
...  

Field studies were conducted in the upper Texas Gulf Coast and in central Louisiana during the 2013 through 2015 growing seasons to evaluate the effects of fungicides on grain sorghum growth and development when disease pressure was low or nonexistent. Azoxystrobin and flutriafol at 1.0 L/ha and pyraclostrobin at 0.78 L/ha were applied to the plants of two grain sorghum hybrids (DKS 54-00, DKS 53-67) at 25% bloom and compared with the nontreated check for leaf chlorophyll content, leaf temperature, and plant lodging during the growing season as well as grain mold, test weight, yield, and nitrogen and protein content of the harvested grain. The application of a fungicide had no effect on any of the variables tested with grain sorghum hybrid responses noted. DKS 53-67 produced higher yield, greater test weight, higher percent protein, and N than DKS 54-00. Results of this study indicate that the application of a fungicide when little or no disease is present does not promote overall plant health or increase yield.


1997 ◽  
Vol 24 (1) ◽  
pp. 52-59
Author(s):  
S. D. Stewart ◽  
K. L. Boweri ◽  
T. P. Mack ◽  
J. H. Edwards

Abstract Three row spacings and two planting dates for peanuts, Arachis hypogaea L., were examined in 1993 and 1994 to determine the influence of the canopy environment on lesser cornstalk borer, Elasmopalpus lignosellus (Zeller) (Lepidoptera: Pyralidae), other arthropods, and alflatoxigenic fungi. Climatically, 1993 and 1994 were disparate years. Decreasing row spacing increased relative leaf area and light interception by the canopy but, compared to difference between planting dates or years, had a relatively small impact on soil temperatures and relative humidity within the canopy. Late planting produced smaller plants, retarded canopy development, and reduced yield in both years, but especially in 1993 when it was hot and dry. The wide row spacing did not yield as well as twin and normal row spacings in either year. Lesser cornstalk borer damage and aflatoxin concentration were higher in the late planting than in the early planting of 1993, but were unaffected by row spacing. Fewer predatory arthropods were caught as row spacing decreased in both beat and pitfall samples, but planting date had variable effects. Prevailing climatic conditions and planting date appeared to be more important in influencing the canopy environment and pest densities than was row spacing.


Sign in / Sign up

Export Citation Format

Share Document