scholarly journals Superoptimal Rate of Convergence in Nonparametric Estimation for Functional Valued Processes

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Christophe Chesneau ◽  
Bertrand Maillot

We consider the nonparametric estimation of the generalised regression function for continuous time processes with irregular paths when the regressor takes values in a semimetric space. We establish the mean-square convergence of our estimator with the same superoptimal rate as when the regressor is real valued.

2016 ◽  
Vol 8 (6) ◽  
pp. 1004-1022 ◽  
Author(s):  
Xu Yang ◽  
Weidong Zhao

AbstractIn this paper, we investigate the mean-square convergence of the split-step θ-scheme for nonlinear stochastic differential equations with jumps. Under some standard assumptions, we rigorously prove that the strong rate of convergence of the split-step θ-scheme in strong sense is one half. Some numerical experiments are carried out to assert our theoretical result.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 815 ◽  
Author(s):  
Usa Humphries ◽  
Grienggrai Rajchakit ◽  
Pramet Kaewmesri ◽  
Pharunyou Chanthorn ◽  
Ramalingam Sriraman ◽  
...  

In this paper, we study the mean-square exponential input-to-state stability (exp-ISS) problem for a new class of neural network (NN) models, i.e., continuous-time stochastic memristive quaternion-valued neural networks (SMQVNNs) with time delays. Firstly, in order to overcome the difficulties posed by non-commutative quaternion multiplication, we decompose the original SMQVNNs into four real-valued models. Secondly, by constructing suitable Lyapunov functional and applying It o ^ ’s formula, Dynkin’s formula as well as inequity techniques, we prove that the considered system model is mean-square exp-ISS. In comparison with the conventional research on stability, we derive a new mean-square exp-ISS criterion for SMQVNNs. The results obtained in this paper are the general case of previously known results in complex and real fields. Finally, a numerical example has been provided to show the effectiveness of the obtained theoretical results.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Long Shi

In this work, a generalization of continuous time random walk is considered, where the waiting times among the subsequent jumps are power-law correlated with kernel function M(t)=tρ(ρ>-1). In a continuum limit, the correlated continuous time random walk converges in distribution a subordinated process. The mean square displacement of the proposed process is computed, which is of the form 〈x2(t)〉∝tH=t1/(1+ρ+1/α). The anomy exponent H varies from α to α/(1+α) when -1<ρ<0 and from α/(1+α) to 0 when ρ>0. The generalized diffusion equation of the process is also derived, which has a unified form for the above two cases.


1975 ◽  
Vol 7 (03) ◽  
pp. 468-494
Author(s):  
H. Hering

We construct an immigration-branching process from an inhomogeneous Poisson process, a parameter-dependent probability distribution of populations and a Markov branching process with homogeneous transition function. The set of types is arbitrary, and the parameter is allowed to be discrete or continuous. Assuming a supercritical branching part with primitive first moments and finite second moments, we prove propositions on the mean square convergence and the almost sure convergence of normalized averaging processes associated with the immigration-branching process.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Long Shi ◽  
Aiguo Xiao

We consider a particular type of continuous time random walk where the jump lengths between subsequent waiting times are correlated. In a continuum limit, the process can be defined by an integrated Brownian motion subordinated by an inverse α-stable subordinator. We compute the mean square displacement of the proposed process and show that the process exhibits subdiffusion when 0<α<1/3, normal diffusion when α=1/3, and superdiffusion when 1/3<α<1. The time-averaged mean square displacement is also employed to show weak ergodicity breaking occurring in the proposed process. An extension to the fractional case is also considered.


2014 ◽  
Vol 30 (6) ◽  
pp. 1315-1347 ◽  
Author(s):  
Yoonseok Lee

This paper considers nonparametric estimation of autoregressive panel data models with fixed effects. A within-group type series estimator is developed and its convergence rate and asymptotic normality are derived. It is found that the series estimator is asymptotically biased and the bias could reduce the mean-square convergence rate compared with the cross-section cases. A bias corrected nonparametric estimator is developed.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Feng Lian ◽  
Chen Li ◽  
Chongzhao Han ◽  
Hui Chen

The convergence for the sequential Monte Carlo (SMC) implementations of the multitarget multi-Bernoulli (MeMBer) filter and cardinality-balanced MeMBer (CBMeMBer) filters is studied here. This paper proves that the SMC-MeMBer and SMC-CBMeMBer filters, respectively, converge to the true MeMBer and CBMeMBer filters in the mean-square sense and the corresponding bounds for the mean-square errors are given. The significance of this paper is in theory to present the convergence results of the SMC-MeMBer and SMC-CBMeMBer filters and the conditions under which the two filters satisfy mean-square convergence.


Sign in / Sign up

Export Citation Format

Share Document