scholarly journals Effects of Outlets on Cracking Risk and Integral Stability of Super-High Arch Dams

2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Peng Lin ◽  
Hongyuan Liu ◽  
Qingbin Li ◽  
Hang Hu

In this paper, case study on outlet cracking is first conducted for the Goupitan and Xiaowan arch dams. A nonlinear FEM method is then implemented to study effects of the outlets on integral stability of the Xiluodu arch dam under two loading conditions, i.e., normal loading and overloading conditions. On the basis of the case study and the numerical modelling, the outlet cracking mechanism, risk, and corresponding reinforcement measures are discussed. Furthermore, the numerical simulation reveals that (1) under the normal loading conditions, the optimal distribution of the outlets will contribute to the tensile stress release in the local zone of the dam stream surface and decrease the outlet cracking risk during the operation period. (2) Under the overloading conditions, the cracks initiate around the outlets, then propagate along the horizontal direction, and finally coalesce with those in adjacent outlets, where the yield zone of the dam has a shape of butterfly. Throughout this study, a dam outlet cracking risk control and reinforcement principle is proposed to optimize the outlet design, select the appropriate concrete material, strengthen the temperature control during construction period, design reasonable impounding scheme, and repair the cracks according to their classification.

2018 ◽  
Vol 8 (12) ◽  
pp. 2555 ◽  
Author(s):  
Peng Lin ◽  
Pengcheng Wei ◽  
Weihao Wang ◽  
Hongfei Huang

It is of great significance to study the cracking risk, the overall stability, and the reinforcement measures of arch dams for ensuring long-term safety. In this study, the cracking types and factors of arch dams are summarized. By employing a nonlinear constitutive model relating to the yielding region, a fine three-dimensional finite element simulation of the Xulong arch dam is conducted. The results show that the dam cracking risk is localized around the outlets, the dam heel, and the left abutment. Five dam stress zones are proposed to analysis dam cracking state base of numerical results. It is recommended to use a shearing-resistance wall in the fault f57, replace the biotite enrichment zone with concrete and perform consolidation grouting or anchoring on the excavated exposed weak structural zone. Three safety factors of the Xulong arch dam are obtained, K_1 = 2~2.5; K_2 = 5; K_3 = 8.5, and the overall stability of the Xulong arch dam is guaranteed. This study demonstrates the significance of the cracking control of similar high arch dams.


Author(s):  
Chongshi Gu ◽  
Xiao Fu ◽  
Chenfei Shao ◽  
Zhongwen Shi ◽  
Huaizhi Su

As an important feature, deformation analysis is of great significance to ensure the safety and stability of arch dam operation. In this paper, Jinping-I arch dam with a height of 305 m, which is the highest dam in the world, is taken as the research object. The deformation data representation method is analyzed, and the processing method of deformation spatiotemporal data is discussed. A deformation hybrid model is established, in which the hydraulic component is calculated by the finite element method, and other components are still calculated by the statistical model method. Since the relationship among the measuring points is not taken into account and the overall situation cannot be fully reflected in the hybrid model, a spatiotemporal hybrid model is proposed. The measured values and coordinates of all the typical points with pendulums of the arch dam are included in one spatiotemporal hybrid model, which is feasible, convenient, and accurate. The model can predict the deformation of any position on the arch dam. This is of great significance for real-time monitoring of deformation and stability of Jinping-I arch dam and ensuring its operation safety.


2014 ◽  
Vol 6 ◽  
pp. 587263 ◽  
Author(s):  
Mohammad Amin Hesari ◽  
Mohsen Ghaemian ◽  
Abolfazl Shamsai

Influence of joints behavior on arch dams operation during the earthquakes is investigated. The case study is the Karun-1 double curvature arch dam with the height of 200 meters. The arch dam-foundation-reservoir systems are modeled with and without joints and estimate the effects of contraction and lift joints on stresses and displacements response histories for assessing the earthquake performance. According to nolinear dynamical analysis results, inclusion of the contraction and lift joints considerably influenced the dam response.


2016 ◽  
Vol 2 (6) ◽  
pp. 295-305
Author(s):  
Mortaza Ali Ghorbani ◽  
Majid Pasbani Khiavi ◽  
Parya Ahmadi

In this paper the effect of nonlinear behaviour of concrete is investigated on seismic performance of a double curvature concrete dam. The Morrow Point concrete dam has been selected as the case study and dam-reservoir-foundation interaction considered in the model. Finite element method has been used for modelling and analysis of case study by applying the El Centro earthquake components considering nonlinear behaviour of concrete. The obtained results of nonlinear dynamic analysis illustrate the increasing of displacement of dam crest along the river and decreasing of maximum principle stresses in critical points. The results demonstrate the importance of consideration of nonlinear behaviour of material in seismic performance of arch dams to achieve the optimal design of models.


2013 ◽  
Vol 3 (3) ◽  
Author(s):  
Mohammad Hariri-Ardebili ◽  
Hasan Mirzabozorg ◽  
M. Kianoush

AbstractDam-reservoir interaction is one of the classic coupled problems in which two various environments with different physical characteristics are in contact with each other on interface boundary. Consideration of such interaction is important in design of new dams as well as on safety evaluation of the existing ones. In the present study, the effect of hydrodynamic pressures at various reservoir operational levels on seismic behavior of an arch dam is investigated. Dez ultra-high arch dam in Iran was selected as case study and all contraction and peripheral joints were simulated using node-to-node contact elements which have the ability of opening/closing and tangential movement. In addition, stage construction effects including joint grouting based on available construction reports were considered. The reservoir was assumed to be compressible and the foundation rock was modeled to account for its flexibility. The TABAS earthquake record was used to excite the finite element model of dam-reservoir-foundation system. It was found that dam-reservoir interaction has significant structural effects on the system and generally, operating the considered arch dam at different water levels can highly affects the distribution of the crack prone area under the maximum credible earthquake.


2015 ◽  
Vol 8 (11) ◽  
pp. 9023-9041 ◽  
Author(s):  
Danni Luo ◽  
Peng Lin ◽  
Qingbin Li ◽  
Dong Zheng ◽  
Hongyuan Liu

2012 ◽  
Vol 594-597 ◽  
pp. 738-741 ◽  
Author(s):  
Yin Duan ◽  
Xing Hong Liu ◽  
Xiao Lin Chang

Main factors of the temperature control and crack prevention in arch dams are summarized. The Space-time Dynamic Control method in pipe cooling process and the Temperature Real-time Control and Decision Database System are introduced to help for temperature real-time control and rapid analysis. Successful application of these new techniques in the construction of Dagangshan arch dam indicates that the proposed method are of significant effectiveness on the temperature control and crack prevention, and have good application prospect in practical project.


2016 ◽  
Vol 62 (4) ◽  
pp. 187-200
Author(s):  
K. Żółtowski ◽  
P. Kalitowski

AbstractThis article deals with the problem of determining the resistance of end-plate connections. A nonlinear FEM model of the joint was constructed in order to predict its carrying capacity. A standard code procedure was done as well. The analyses have been done to assess atypical end-plate joints designed and constructed as a part of roof structures.


2015 ◽  
Vol 1 (2) ◽  
pp. 14-20 ◽  
Author(s):  
Vandad Kadkhodayan ◽  
S. Meisam Aghajanzadeh ◽  
Hasan Mirzabozorg

In the present paper, the IDA approach is applied to analyzing a thin high arch dam. The parameters of Sa, PGA and PGV are used as intensity measure (IM) and the overstressed area (OSA) is utilized as engineering demand parameter (EDP) and then, three limit states are assigned to the considered structure using the IDA curves. Subsequently, fragility curves are calculated and it is showed that the PGA is a better parameter to be taken as IM. In addition, it is found that the utilizing the proposed methodology, quantifying the qualitative limit states is probable. At last, having the fragility curves and considering their slope in addition to the other routine data which can be extracted from these curves, one may be able to conclude that in what performance level the considered dam body seems to be weak and needs retrofitting works.


Sign in / Sign up

Export Citation Format

Share Document