Seismic analysis of high arch dams considering contraction-peripheral joints coupled effects

2013 ◽  
Vol 3 (3) ◽  
Author(s):  
Mohammad Hariri-Ardebili ◽  
Hasan Mirzabozorg ◽  
M. Kianoush

AbstractDam-reservoir interaction is one of the classic coupled problems in which two various environments with different physical characteristics are in contact with each other on interface boundary. Consideration of such interaction is important in design of new dams as well as on safety evaluation of the existing ones. In the present study, the effect of hydrodynamic pressures at various reservoir operational levels on seismic behavior of an arch dam is investigated. Dez ultra-high arch dam in Iran was selected as case study and all contraction and peripheral joints were simulated using node-to-node contact elements which have the ability of opening/closing and tangential movement. In addition, stage construction effects including joint grouting based on available construction reports were considered. The reservoir was assumed to be compressible and the foundation rock was modeled to account for its flexibility. The TABAS earthquake record was used to excite the finite element model of dam-reservoir-foundation system. It was found that dam-reservoir interaction has significant structural effects on the system and generally, operating the considered arch dam at different water levels can highly affects the distribution of the crack prone area under the maximum credible earthquake.

2013 ◽  
Vol 405-408 ◽  
pp. 617-620
Author(s):  
Er Feng Zhao ◽  
Li Bing Zhang

Reservoir basin deformation monitoring data of some high arch dams has shown that the upstream of the dam subsided while the downstream warped upward slightly. Therefore, combining reservoir basin with high arch dam and foundation, the widespread finite element model is built and the reservoir basin deformation and its influence factor weight are determined through the simulation of the bedrock depth, the extending length of the upstream and downstream and different water levels based on an improved entropy method. The engineering simulation model has proved the reservoir basin deformation mechanism. Moreover, the reservoir basin deformation will tend to converge when the simulation model expands to certain extent. The research can provide suggestions for deformation doubts occurring during the high arch dam operation.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengshan Guo ◽  
Jianxin Liao ◽  
Hailong Huang ◽  
Hui Liang ◽  
Deyu Li ◽  
...  

The contraction joints of arch dams with and without shear keys are simplified to be with no-slip condition and with relative sliding condition, respectively. Based on the Lagrange multiplier method, a contact model considering the manner of independent cantilever dead load type with no-slip condition and relative sliding condition is proposed to model the nonlinearities of vertical contraction joins, which is special to the nonlinear analysis of arch dams considering the manner of dead load type. Different from the conventional Gauss iterative method, the strategy of the alternating iterative solution of normal force and tangential force is employed. The parallelization based on overlapping domain decomposition method (ODDM) and explicit message passing using distributed memory parallel computers is employed to improve the computational efficiency. An existing high arch dam with fine finite element model is analyzed to investigate the effect of shear sliding of vertical joints on seismic response of the arch dam. The result shows that the values of maximum principal tensile stress under relative sliding condition are significantly greater than those under no-slip condition.


2008 ◽  
Vol 385-387 ◽  
pp. 269-272 ◽  
Author(s):  
Zai Tie Chen

Risk analysis can overcome the weakness of conventional safety evaluation of high-arch dams where the random nature of the load and resistance effect are ignored and the failure mode and failure disaster loss are not taken into account. On the basis of statistical analysis of the data of the failure arch dams and faulty and perilous arch dams in the world, it is deduced that the failure of high arch dam is mainly caused by super elevation floods, highly intense earthquakes, mountain landslides, abnormal temperature variation, explosion load, etc. Five major failure modes for high arch dams are suggested, namely dam abutment rock instability, fundamental plane instability, entire entity instability, excess cracking and extreme dam overflow. Based on the study of the failure mechanism of the major failure modes, a state function is established to calculate the failure probability of the major failure modes. An approach is developed to obtain the statistical quantity and the regularities of distribution of the load and resistance random variables.


2014 ◽  
Vol 670-671 ◽  
pp. 651-654
Author(s):  
Er Feng Zhao ◽  
Yu Feng Jiang ◽  
Yan Ling Gu

With the development of 300m super-high dams are built in the southwest of China, reservoir water gravity will make the settlement of the reservoir basin, which will make dam tilt upstream. In the paper, reservoir settlement will be studied in-depth on the basis of monitoring data analysis and numerical simulation comprehensively. First, reservoir basin will be sinking with the rising of the upstream water gradually according to level monitoring data. Second, those affect factors of FEM calculation have been explored comparatively, such as displacement modes, element geometry and boundary conditions. Third, reservoir, dam and foundation are integrated into a whole to establish a wide spread finite element model. At last, reservoir deformation and its influence factors are determined through the simulation of the bedrock depth, the extending length of the upstream and downstream and different water levels. Those methods have been applied into an engineering project and analysis results show that the settlement of the reservoir will make high arch dam tilt upstream, the higher of the water level, the larger of the horizontal displacement. Accordingly, reservoir deformation should be considered deeply on the appraisement of super-high arch dam operating status in future.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammad Amin Hariri Ardebili ◽  
Hasan Mirzabozorg

Seismic failure of major concrete dams can be disastrous due to sudden release of reservoir water. At the present study, 203 m DEZ arch dam was selected as case study, and two types of nonlinearity were incorporated in seismic analysis of dam, joint nonlinearity and material nonlinearity. The finite element model of the dam, soil, and water was excited using multicomponent maximum design earthquake record which was extracted from seismic hazard analysis of the dam site. Also seismic performance of the dam was evaluated based on linear analysis. The extension of overstressed areas, demand-capacity ratio, and cumulative inelastic duration were used to identify the necessity of nonlinear analysis. It was found that when contraction joints between dam blocks are modeled, the direction of the principal stresses and their distribution patterns are changed meaningfully. In addition, overstress surfaces on the dam body change in comparison with the model without contraction joints.


2015 ◽  
Vol 8 (11) ◽  
pp. 9023-9041 ◽  
Author(s):  
Danni Luo ◽  
Peng Lin ◽  
Qingbin Li ◽  
Dong Zheng ◽  
Hongyuan Liu

2014 ◽  
Vol 578-579 ◽  
pp. 964-967
Author(s):  
Zhi Qiang Wang ◽  
Wen Biao Liu

The brittle failure finite element method is widely used in arch dam safety evaluation, but it also has some problems, the concrete strength criterion is different, the dam failure range is different. This article first introduces brittle failure constitutive relation and three strength criterions, then takes a high arch dam as an example to compute, obtains some conclusions that the relative failure range of foundation plane corresponds to blaxial strength criterion is slightly bigger than the result of uniaxial strength criterion, is almost the same as the result of triaxial strength criterion. Because the influence of the third principal stress is compressed stress to the dam crack is taken into account under multiaxial strength criterion, therefore using multiaxial strength criterion is more reasonable.


2015 ◽  
Vol 1 (2) ◽  
pp. 14-20 ◽  
Author(s):  
Vandad Kadkhodayan ◽  
S. Meisam Aghajanzadeh ◽  
Hasan Mirzabozorg

In the present paper, the IDA approach is applied to analyzing a thin high arch dam. The parameters of Sa, PGA and PGV are used as intensity measure (IM) and the overstressed area (OSA) is utilized as engineering demand parameter (EDP) and then, three limit states are assigned to the considered structure using the IDA curves. Subsequently, fragility curves are calculated and it is showed that the PGA is a better parameter to be taken as IM. In addition, it is found that the utilizing the proposed methodology, quantifying the qualitative limit states is probable. At last, having the fragility curves and considering their slope in addition to the other routine data which can be extracted from these curves, one may be able to conclude that in what performance level the considered dam body seems to be weak and needs retrofitting works.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Masoomeh Akbari ◽  
Mohammad Amin Hariri-Ardebili ◽  
Hasan Mirzabozorg

Nonuniform excitation due to spatially varying ground motions on nonlinear responses of concrete arch dams is investigated. A high arch dam was selected as numerical example, reservoir was modelled as incompressible material, foundation was assumed as mass-less medium, and all contraction and peripheral joints were modelled considering the ability of opening/closing. This study used Monte-Carlo simulation approach for generating spatially nonuniform ground motion. In this approach, random seismic characteristics due to incoherence and wave passage effects were investigated and finally their effects on structural response were compared with uniform excitation at design base level earthquake. Based on the results, nonuniform input leads to some differences than uniform input. Moreover using nonuniform excitation increase, stresses on dam body.


Sign in / Sign up

Export Citation Format

Share Document