scholarly journals Exact Evaluation of Infinite Series Using Double Laplace Transform Technique

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Hassan Eltayeb ◽  
Adem Kılıçman ◽  
Said Mesloub

Double Laplace transform method was applied to evaluate the exact value of double infinite series. Further we generalize the current existing methods and provide some examples to illustrate and verify that the present method is a more general technique.

Author(s):  
Muhammad Jamil ◽  
Rahmat Ali Khan ◽  
Kamal Shah

A wave phenomena evolved day after day, as various concepts regarding waves appeared with the passage of time. These phenomena are generally modelled mathematically by partial differential equations (PDEs). In this research, we investigate the exact analytical solutions of one and two dimensional linear dissipative wave equations which are modelled by second order PDEs with use of some initial and boundary conditions. We use double Laplace transform (DLT) and triple Laplace transform (TLT) methods to determine these exact analytical solutions. We provide examples with figures to test effectiveness of this scheme of Laplace transform


2003 ◽  
Vol 38 (1) ◽  
pp. 53-64 ◽  
Author(s):  
P Hosseini-Tehrani ◽  
M. R Eslami

A boundary element method based on the Laplace transform technique is developed for transient coupled thermoelasticity problems with relaxation times in a two-dimensional finite domain. The dynamic thermoelastic model of Lord and Shulman (LS) is selected to show how mechanical and thermal energy conversion takes place in a coupled field. The Laplace transform method is applied to the time domain and the resulting equations in the transformed field are discretized using the boundary element method. The nodal dimensionless temperature and displacements in the transformed domain are inverted to obtain the actual physical quantities, using the numerical inversion of the Laplace transform method. The creation and propagation of elastic and thermoelastic waves in a finite domain and their effects on each other are investigated for the first time in this paper. Different relaxation times are chosen to show briefly the events that take place in temperature, displacement and stress fields considering the LS theory. Details of the formulation and numerical implementation are presented.


2021 ◽  
Vol 4 (3) ◽  
pp. 1-11
Author(s):  
Anongo D.O. ◽  
Awari Y.S.

Many problems in natural and engineering sciences such as heat transfer, elasticity, quantum mechanics, water flow, and others are modelled mathematically by partial differential equations. Some of these problems may be linear, nonlinear, homogeneous, non-homogeneous, and order greater or equal one. Finding the theoretical solution to these problems with less cumbersome techniques is an active area of research in the aforementioned field. In this research paper, we have developed a new application of the double Laplace transform method to solve homogeneous and non-homogeneous linear partial differential equations (pdes) with higher-order derivatives (i.e order n where n≥2) in science and engineering. We discussed a brief theory of double Laplace transforms that helped in its application. The main advantage of our method is the reduction of computational effort in finding solution to pdes. Another major benefit of our method is solving problems in the form of (21) directly by transforming to an algebraic equation where the inverse double Laplace transform is implemented for analytical solution, unlike other integral transform methods that would first transform to a system of ODEs before they are solved, is it also very effective in solving linear high-order partial differential equations and yield fast convergence. We present a well-simplified solution for easier comprehension by upcoming researchers.


Author(s):  
Ranjit R. Dhunde ◽  
G. L. Waghmare

Double Laplace transform method is applied to find exact solutions of linear/nonlinear space-time fractional telegraph equations in terms of Mittag-Leffler functions subject to initial and boundary conditions. Furthermore, we give illustrative examples to demonstrate the efficiency of the method.


2019 ◽  
Vol 17 (1) ◽  
pp. 265-275
Author(s):  
Muchammad Abrori ◽  
Sugiyanto ◽  
Hana Mei Satriana Sari

2016 ◽  
Vol 5 (3) ◽  
Author(s):  
Mukesh Singh ◽  
Mohd Naseem ◽  
Amit Kumar ◽  
Sunil Kumar

AbstractThis paper emphasizes on finding the solution for a foam drainageequation using the technique of modified homotopy analysis transform method (MHATM). MHATM is a new amalgamation of the homotopy analysis method and Laplace transform method with homotopy polynomial. Comparisons are made between the results of the proposed method for different values of fractional derivative α and exact solutions. Then, we analyze the results by numerical simulations, which demonstrate the simplicity and effectiveness of the present method.


Sign in / Sign up

Export Citation Format

Share Document