scholarly journals Dynamic Principal Component Analysis with Nonoverlapping Moving Window and Its Applications to Epileptic EEG Classification

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shengkun Xie ◽  
Sridhar Krishnan

Classification of electroencephalography (EEG) is the most useful diagnostic and monitoring procedure for epilepsy study. A reliable algorithm that can be easily implemented is the key to this procedure. In this paper a novel signal feature extraction method based on dynamic principal component analysis and nonoverlapping moving window is proposed. Along with this new technique, two detection methods based on extracted sparse features are applied to deal with signal classification. The obtained results demonstrated that our proposed methodologies are able to differentiate EEGs from controls and interictal for epilepsy diagnosis and to separate EEGs from interictal and ictal for seizure detection. Our approach yields high classification accuracy for both single-channel short-term EEGs and multichannel long-term EEGs. The classification performance of the method is also compared with other state-of-the-art techniques on the same datasets and the effect of signal variability on the presented methods is also studied.

2011 ◽  
Vol 219-220 ◽  
pp. 1574-1577
Author(s):  
Huai Tao Shi ◽  
Jian Chang Liu ◽  
Long Li ◽  
Yu Zhang

In traditional dynamic principal component analysis (DPCA) for fault detection, there are some drawbacks such as an excess of the number of principal components (PCs), low computational efficiency, etc. For dealing with the problem, this paper develops a hybrid dynamic principal component analysis (HDPCA) technique, this method can remove spacial and serial correlation by divide-and-conquer algorithm instead of parallel processing strategy, which can detect individual fault accurately and efficiently. The strip breaking fault in steel rolling process is used to demonstrate the improved performance of developed technique in comparison with traditional DPCA fault detection methods. It can be perceived that HDPCA algorithm has the better performance of fault detection and computational efficiency.


Author(s):  
P. Geethanjali

This chapter discusses design and development of a surface Electromyogram (EMG) signal detection and conditioning system along with the issues of gratuitous spurious signals such as power line interference, artifacts, etc., which make signals plausible. In order to construe the recognition of hand gestures from EMG signals, Time Domain (TD) and well as Autoregressive (AR) coefficients features are extracted. The extracted features are diminished using the Principal Component Analysis (PCA) to alleviate the burden of the classifier. A four-channel continuous EMG signal conditioning system is developed and EMG signals are acquired from 10 able-bodied subjects to classify the 6 unique movements of hand and wrist. The reduced statistical TD and AR features are used to classify the signal patterns through k Nearest Neighbour (kNN) as well as Neural Network (NN) classifier. Further, EMG signals acquired from a transradial amputee using 8-channel systems for the 6 amenable motions are also classified. Statistical Analysis of Variance (ANOVA) results on classification performance of able-bodied subject divulge that the performance TD-PCA features are more significant than the AR-PCA features. Further, no significant difference in the performance of NN classifier and kNN classifier is construed with TD reduced features. Since the average classification error of kNN classifier with TD features is found to be less, kNN classifier is implemented in off-line using the TMS2407eZdsp digital signal controller to study the actuation of three low-power DC drives in the identification of intended motion with an able-bodied subject.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yaojun Hao ◽  
Fuzhi Zhang ◽  
Jian Wang ◽  
Qingshan Zhao ◽  
Jianfang Cao

Due to the openness of the recommender systems, the attackers are likely to inject a large number of fake profiles to bias the prediction of such systems. The traditional detection methods mainly rely on the artificial features, which are often extracted from one kind of user-generated information. In these methods, fine-grained interactions between users and items cannot be captured comprehensively, leading to the degradation of detection accuracy under various types of attacks. In this paper, we propose an ensemble detection method based on the automatic features extracted from multiple views. Firstly, to collaboratively discover the shilling profiles, the users’ behaviors are analyzed from multiple views including ratings, item popularity, and user-user graph. Secondly, based on the data preprocessed from multiple views, the stacked denoising autoencoders are used to automatically extract user features with different corruption rates. Moreover, the features extracted from multiple views are effectively combined based on principal component analysis. Finally, according to the features extracted with different corruption rates, the weak classifiers are generated and then integrated to detect attacks. The experimental results on the MovieLens, Netflix, and Amazon datasets indicate that the proposed method can effectively detect various attacks.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Shengkun Xie ◽  
Anna T. Lawniczak

Many network monitoring applications and performance analysis tools are based on the study of an aggregate measure of network traffic, for example, number of packets in transit (NPT). The simulation modeling and analysis of this type of performance indicator enables a theoretical investigation of the underlying complex system through different combination of network setups such as routing algorithms, network source loads or network topologies. To detect stationary increase of network source load, we propose a dynamic principal component analysis (PCA) method, first to extract data features and then to detect a stationary load increase. The proposed detection schemes are based on either the major or the minor principal components of network traffic data. To demonstrate the applications of the proposed method, we first applied them to some synthetic data and then to network traffic data simulated from the packet switching network (PSN) model. The proposed detection schemes, based on dynamic PCA, show enhanced performance in detecting an increase of network load for the simulated network traffic data. These results show usefulness of a new feature extraction method based on dynamic PCA that creates additional feature variables for event detection in a univariate time series.


2006 ◽  
Vol 60 (8) ◽  
pp. 884-891 ◽  
Author(s):  
Hideyuki Shinzawa ◽  
Shigeaki Morita ◽  
Yukihiro Ozaki ◽  
Roumiana Tsenkova

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yunpeng Fan ◽  
Wei Zhang ◽  
Yingwei Zhang

A new adaptive kernel principal component analysis (KPCA) algorithm for monitoring nonlinear time-delay process is proposed. The main contribution of the proposed algorithm is to combine adaptive KPCA with moving window principal component analysis (MWPCA) algorithm, and exponentially weighted principal component analysis (EWPCA) algorithm respectively. The new algorithm prejudges the new available sample with MKPCA method to decide whether the model is updated. Then update the KPCA model using EWKPCA method. And also extend MPCA and EWPCA from linear data space to nonlinear data space effectively. Monitoring experiment is performed using the proposed algorithm. The simulation results show that the proposed method is effective.


Sign in / Sign up

Export Citation Format

Share Document