scholarly journals Generalized Mutual Synchronization between Two Controlled Interdependent Networks

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Quan Xu ◽  
Shengxian Zhuang ◽  
Dan Hu ◽  
Yingfeng Zeng ◽  
Jian Xiao

This paper mainly focuses on the generalized mutual synchronization between two controlled interdependent networks. First, we propose the general model of controlled interdependent networksAandBwith time-varying internetwork delays coupling. Then, by constructing Lyapunov functions and utilizing adaptive control technique, some sufficient conditions are established to ensure that the mutual synchronization errors between the state variables of networksAandBcan asymptotically converge to zero. Finally, two numerical examples are given to illustrate the effectiveness of the theoretical results and to explore potential application in future smart grid. The simulation results also show how interdependent topologies and internetwork coupling delays influence the mutual synchronizability, which help to design interdependent networks with optimal mutual synchronizability.

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Kanit Mukdasai ◽  
Piyapong Niamsup

We consider Lyapunov stability theory of linear time-varying system and derive sufficient conditions for uniform stability, uniform exponential stability, -uniform stability, andh-stability for linear time-varying system with nonlinear perturbation on time scales. We construct appropriate Lyapunov functions and derive several stability conditions. Numerical examples are presented to illustrate the effectiveness of the theoretical results.


Author(s):  
Jian-an Fang ◽  
Yang Tang

Neural networks (NNs) have been useful in many fields, such as pattern recognition, image processing etc. Recently, synchronization of chaotic neural networks (CNNs) has drawn increasing attention due to the high security of neural networks. In this chapter, the problem of synchronization and parameter identification for a class of chaotic neural networks with stochastic perturbation via state and output coupling, which involve both the discrete and distributed time-varying delays has been investigated. Using adaptive feedback techniques, several sufficient conditions have been derived to ensure the synchronization of stochastic chaotic neural networks. Moreover, all the connection weight matrices can be estimated while the lag synchronization and complete synchronization is achieved in mean square at the same time. The corresponding simulation results are given to show the effectiveness of the proposed method.


2019 ◽  
Vol 12 (06) ◽  
pp. 1950066
Author(s):  
Boulbaba Ghanmi

This paper investigates the stability analysis with respect to part of the variables of nonlinear time-varying systems with impulse effect. The approach presented is based on the specially introduced piecewise continuous Lyapunov functions. The Lyapunov stability theorems with respect to part of the variables are generalized in the sense that the time derivatives of the Lyapunov functions are allowed to be indefinite. With the help of the notion of stable functions, asymptotic partial stability, exponential partial stability, input-to-state partial stability (ISPS) and integral input-to-state partial stability (iISPS) are considered. Three numerical examples are provided to illustrate the effectiveness of the proposed theoretical results.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Miaomiao Gao ◽  
Daqing Jiang ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

<p style='text-indent:20px;'>This paper focuses on the spread dynamics of an HIV/AIDS model with multiple stages of infection and treatment, which is disturbed by both white noise and telegraph noise. Switching between different environmental states is governed by Markov chain. Firstly, we prove the existence and uniqueness of the global positive solution. Then we investigate the existence of a unique ergodic stationary distribution by constructing suitable Lyapunov functions with regime switching. Furthermore, sufficient conditions for extinction of the disease are derived. The conditions presented for the existence of stationary distribution improve and generalize the previous results. Finally, numerical examples are given to illustrate our theoretical results.</p>


Author(s):  
Miaomiao Gao ◽  
Daqing Jiang ◽  
Xiangdan Wen

In this paper, we study the dynamical behavior of a stochastic two-compartment model of [Formula: see text]-cell chronic lymphocytic leukemia, which is perturbed by white noise. Firstly, by constructing suitable Lyapunov functions, we establish sufficient conditions for the existence of a unique ergodic stationary distribution. Then, conditions for extinction of the disease are derived. Furthermore, numerical simulations are presented for supporting the theoretical results. Our results show that large noise intensity may contribute to extinction of the disease.


1995 ◽  
Vol 117 (1) ◽  
pp. 31-36 ◽  
Author(s):  
I. M. M. Lammerts ◽  
F. E. Veldpaus ◽  
M. J. G. Van de Molengraft ◽  
J. J. Kok

This paper presents a motion control technique for flexible robots and manipulators. It takes into account both joint and link flexibility and can be applied in adaptive form if robot parameters are unknown. It solves the main problems that are related to the fact that the number of degrees of freedom exceeds both the number of actuators and the number of output variables. The proposed method results in trajectory tracking while all state variables remain bounded. Global, asymptotic stability is ensured for all values of the stiffnesses of joints and links. To show the characteristics of the proposed control law, some simulation results are presented.


2015 ◽  
Vol 25 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Shanmugasundaram Karthikeyan ◽  
Krishnan Balachandran ◽  
Murugesan Sathya

AbstractThis paper is concerned with the problem of controllability of semi-linear stochastic systems with time varying multiple delays in control in finite dimensional spaces. Sufficient conditions are established for the relative controllability of semilinear stochastic systems by using the Banach fixed point theorem. A numerical example is given to illustrate the application of the theoretical results. Some important comments are also presented on existing results for the stochastic controllability of fractional dynamical systems.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Cuimei Jiang ◽  
Akbar Zada ◽  
M. Tamer Şenel ◽  
Tongxing Li

Abstract This paper discusses the synchronization problem of N-coupled fractional-order chaotic systems with ring connection via bidirectional coupling. On the basis of the direct design method, we design the appropriate controllers to transform the fractional-order error dynamical system into a nonlinear system with antisymmetric structure. By choosing appropriate fractional-order Lyapunov functions and employing the fractional-order Lyapunov-based stability theory, several sufficient conditions are obtained to ensure the asymptotical stabilization of the fractional-order error system at the origin. The proposed method is universal, simple, and theoretically rigorous. Finally, some numerical examples are presented to illustrate the validity of theoretical results.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 322
Author(s):  
Ricardo Almeida ◽  
Ravi P. Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan

A fractional model of the Hopfield neural network is considered in the case of the application of the generalized proportional Caputo fractional derivative. The stability analysis of this model is used to show the reliability of the processed information. An equilibrium is defined, which is generally not a constant (different than the case of ordinary derivatives and Caputo-type fractional derivatives). We define the exponential stability and the Mittag–Leffler stability of the equilibrium. For this, we extend the second method of Lyapunov in the fractional-order case and establish a useful inequality for the generalized proportional Caputo fractional derivative of the quadratic Lyapunov function. Several sufficient conditions are presented to guarantee these types of stability. Finally, two numerical examples are presented to illustrate the effectiveness of our theoretical results.


2021 ◽  
Vol 8 (4) ◽  
pp. 842-854
Author(s):  
N. Jayanthi ◽  
◽  
R. Santhakumari ◽  

In this article, we investigate the problem of finite-time passivity for the complex-valued neural networks (CVNNs) with multiple time-varying delays. To begin, many definitions relevant to the finite-time passivity of CVNNs are provided; then the suitable control inputs are designed to guarantee the class of CVNNs are finite-time passive. In the meantime, some sufficient conditions of linear matrix inequalities (LMIs) are derived by using inequalities techniques and Lyapunov stability theory. Finally, a numerical example is presented to illustrate the usefulness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document