scholarly journals An Improved FastSLAM System Based on Distributed Structure for Autonomous Robot Navigation

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Fu-jun Pei ◽  
Hao-yang Li ◽  
Yu-hang Cheng

Fast simultaneous localization and mapping (FastSLAM) is an efficient algorithm for autonomous navigation of mobile vehicle. However, FastSLAM must reconfigure the entire vehicle state equation when the feature points change, which causes an exponential growth in quantities of computation and difficulties in isolating potential faults. In order to overcome these limitations, an improved FastSLAM, based on the distributed structure, is developed in this paper. There are two state estimation parts designed in this improved FastSLAM. Firstly, a distributed unscented particle filter is used to avoid reconfiguring the entire system equation in the vehicle state estimation part. Secondly, in the landmarks estimation part, the observation model is designed as a linear one to update the landmarks states by using the linear observation errors. Then, the convergence of the proposed and improved FastSLAM algorithm is given in the sense of mean square. Finally, the simulation results show that the proposed distributed algorithm could reduce the computational complexity with high accuracy and high fault-tolerance performance.

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 230
Author(s):  
Xiangwei Dang ◽  
Zheng Rong ◽  
Xingdong Liang

Accurate localization and reliable mapping is essential for autonomous navigation of robots. As one of the core technologies for autonomous navigation, Simultaneous Localization and Mapping (SLAM) has attracted widespread attention in recent decades. Based on vision or LiDAR sensors, great efforts have been devoted to achieving real-time SLAM that can support a robot’s state estimation. However, most of the mature SLAM methods generally work under the assumption that the environment is static, while in dynamic environments they will yield degenerate performance or even fail. In this paper, first we quantitatively evaluate the performance of the state-of-the-art LiDAR-based SLAMs taking into account different pattens of moving objects in the environment. Through semi-physical simulation, we observed that the shape, size, and distribution of moving objects all can impact the performance of SLAM significantly, and obtained instructive investigation results by quantitative comparison between LOAM and LeGO-LOAM. Secondly, based on the above investigation, a novel approach named EMO to eliminating the moving objects for SLAM fusing LiDAR and mmW-radar is proposed, towards improving the accuracy and robustness of state estimation. The method fully uses the advantages of different characteristics of two sensors to realize the fusion of sensor information with two different resolutions. The moving objects can be efficiently detected based on Doppler effect by radar, accurately segmented and localized by LiDAR, then filtered out from the point clouds through data association and accurate synchronized in time and space. Finally, the point clouds representing the static environment are used as the input of SLAM. The proposed approach is evaluated through experiments using both semi-physical simulation and real-world datasets. The results demonstrate the effectiveness of the method at improving SLAM performance in accuracy (decrease by 30% at least in absolute position error) and robustness in dynamic environments.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1526
Author(s):  
Fengjiao Zhang ◽  
Yan Wang ◽  
Jingyu Hu ◽  
Guodong Yin ◽  
Song Chen ◽  
...  

The performance of vehicle active safety systems relies on accurate vehicle state information. Estimation of vehicle state based on onboard sensors has been popular in research due to technical and cost constraints. Although many experts and scholars have made a lot of research efforts for vehicle state estimation, studies that simultaneously consider the effects of noise uncertainty and model parameter perturbation have rarely been reported. In this paper, a comprehensive scheme using dual Extended H-infinity Kalman Filter (EH∞KF) is proposed to estimate vehicle speed, yaw rate, and sideslip angle. A three-degree-of-freedom vehicle dynamics model is first established. Based on the model, the first EH∞KF estimator is used to identify the mass of the vehicle. Simultaneously, the second EH∞KF estimator uses the result of the first estimator to predict the vehicle speed, yaw rate, and sideslip angle. Finally, simulation tests are carried out to demonstrate the effectiveness of the proposed method. The test results indicate that the proposed method has higher estimation accuracy than the extended Kalman filter.


Author(s):  
Varun Krishna Balakrishnnan ◽  
Stefano Longo ◽  
Efstathios Velenis ◽  
Phil Barber

2015 ◽  
Author(s):  
Χρήστος Παπαχρήστος

This Dissertation addresses the design and development of small-scale UnmannedAerial Vehicles of the TiltRotor class, alongside their autonomous navigation requirements,including the fully-onboard state estimation, high-efficiency flight control,and advanced environment perception.Starting with an educated Computer Assisted Design-based methodology, a mechanicallyrobust, customizable, and repeatable vehicle build is achieved, relyingon high-quality Commercially Available Off-The Shelf equipment –sensors, actuators,structural components–, optionally aided by Rapid Prototyping technology.A high-fidelity modeling process is conducted, incorporating the rigid-body dynamics,aerodynamics, and the actuation subsystem dynamics, exploiting fistprincipleapproaches, Frequency Domain System Identification, as well as computationaltools. Considering the most significant phenomena captured in thisprocess, a more simplified PieceWise Affine system model representation is developedfor control purposes –which however incorporates complexities such as flight(state) envelope-associated aerodynamics, the differentiated effects of the directthrust-vectoring (rotor-tilting) and the underactuated (body-pitching) actuationauthorities, as well as their interferences through rigid-body coupling–.Despite the switching system dynamics, and –as thoroughly elaborated– theirreliance on constrained manipulated variables, to maintain a meaningful controlorientedrepresentation, the real-time optimal flight control of the TiltRotor vehicleis achieved relying on a Receding Horizon methodology, and more specifically anexplicit Model Predictive Control framework. This synthesis guarantees globalstability of the switching dynamics, observance of state and control input constraints,response optimality, as well as efficient execution on low computationa power modules due to its explicit representation. Accompanied by a proper Lowand-Mid-LevelControl synthesis, this scheme provides exceptional flight handlingqualities to the aerial vehicle, particularly in the areas of aggressive maneuveringand high-accuracy trajectory tracking.Moreover, the utility of TiltRotor vehicles in the field of aerial robotic forcefulphysical interaction is researched. Exploiting the previously noted properties ofthe PieceWise Affine systems Model Predictive Control strategy, the guaranteedstabilityFree-Flight to Physical-Interaction switching of the system is achieved,effectively bringing the aerial vehicle into safe, controlled physical contact withthe surface of structures in the environment.More importantly, employing rotor-tilting actuation –collectively and differentially–significant forces and moments can be applied onto the environment, while via thestandard underactuated authority the vehicle maintains a stable hovering-attitudepose, where the system’s disturbance rejection properties are maximized. Overall,the complete control framework enables coming into physical contact with environmentstructures, and manipulating the enacted forces and moments. Exploitingsuch capabilities the TiltRotor is used to achieve the execution of physicallydemandingwork-tasks (surface-grinding) and the manipulation of realisticallysizedobjects (of twice its own mass) via pushing.Additionally, the fully-onboard state estimation problem is tackled by implementingdata fusion of measurements derived from inertial sensors and customdevelopedcomputer vision algorithms which employ Homography and OpticalFlow calculation. With a proper sensorial setup, high-rate and robust ego-motionestimation is achieved, enabling the controlled aggressive maneuverability withoutreliance on external equipment, such as motion capture systems or GlobalPositioning System coverage.Finally, a hardware/software framework is developed which adds advanced autonomousperception and navigation capabilities to small-scale unmanned vehicles,employing stereo vision and integrating state-of-the art solutions for incrementalenvironment building, dense reconstruction and mapping, and point-to-pointcollision-free navigation. Within this framework, algorithms which enable the detection,segmentation, (re-)localization, and mobile tracking –and avoidance– of adynamic subject within the aerial vehicle’s operating space are developed, substantiallyincreasing the operational potential of autonomous aircraft within dynamicenvironments and/or dynamically evolving missions.


Sign in / Sign up

Export Citation Format

Share Document