Review of Vehicle State Estimation Problem under Driving Situation

2009 ◽  
Vol 45 (05) ◽  
pp. 20 ◽  
Author(s):  
Zhuoping YU
Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4750
Author(s):  
Julian Ruggaber ◽  
Jonathan Brembeck

In Kalman filter design, the filter algorithm and prediction model design are the most discussed topics in research. Another fundamental but less investigated issue is the careful selection of measurands and their contribution to the estimation problem. This is often done purely on the basis of empirical values or by experiments. This paper presents a novel holistic method to design and assess Kalman filters in an automated way and to perform their analysis based on quantifiable parameters. The optimal filter parameters are computed with the help of a nonlinear optimization algorithm. To determine and analyze an optimal filter design, two novel quantitative nonlinear observability measures are presented along with a method to quantify the dominance contribution of a measurand to an estimate. As a result, different filter configurations can be specifically investigated and compared with respect to the selection of measurands and their influence on the estimation. An unscented Kalman filter algorithm is used to demonstrate the method’s capabilities to design and analyze the estimation problem parameters. For this purpose, an example of a vehicle state estimation with a focus on the tire-road friction coefficient is used, which represents a challenging problem for classical analysis and filter parameterization.


2020 ◽  
Vol 53 (2) ◽  
pp. 4955-4960
Author(s):  
C. Kawan ◽  
A. Matveev ◽  
A. Pogromsky

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1526
Author(s):  
Fengjiao Zhang ◽  
Yan Wang ◽  
Jingyu Hu ◽  
Guodong Yin ◽  
Song Chen ◽  
...  

The performance of vehicle active safety systems relies on accurate vehicle state information. Estimation of vehicle state based on onboard sensors has been popular in research due to technical and cost constraints. Although many experts and scholars have made a lot of research efforts for vehicle state estimation, studies that simultaneously consider the effects of noise uncertainty and model parameter perturbation have rarely been reported. In this paper, a comprehensive scheme using dual Extended H-infinity Kalman Filter (EH∞KF) is proposed to estimate vehicle speed, yaw rate, and sideslip angle. A three-degree-of-freedom vehicle dynamics model is first established. Based on the model, the first EH∞KF estimator is used to identify the mass of the vehicle. Simultaneously, the second EH∞KF estimator uses the result of the first estimator to predict the vehicle speed, yaw rate, and sideslip angle. Finally, simulation tests are carried out to demonstrate the effectiveness of the proposed method. The test results indicate that the proposed method has higher estimation accuracy than the extended Kalman filter.


Author(s):  
Varun Krishna Balakrishnnan ◽  
Stefano Longo ◽  
Efstathios Velenis ◽  
Phil Barber

Author(s):  
Hao Yang ◽  
Yilian Zhang ◽  
Wei Gu ◽  
Fuwen Yang ◽  
Zhiquan Liu

This paper is concerned with the state estimation problem for an automatic guided vehicle (AGV). A novel set-membership filtering (SMF) scheme is presented to solve the state estimation problem in the trajectory tracking process of the AGV under the unknown-but-bounded (UBB) process and measurement noises. Different from some existing traditional filtering methods, such as Kalman filtering method and [Formula: see text] filtering method, the proposed SMF scheme is developed to provide state estimation sets rather than state estimation points for the system states to effectively deal with UBB noises and reduce the requirement of the sensor precision. Then, in order to obtain the state estimation ellipsoids containing the true states, a set-membership estimation algorithm is designed based on the AGV physical model and S-procedure technique. Finally, comparison examples are presented to illustrate the effectiveness of the proposed SMF scheme for an AGV state estimation problem in the present of the UBB noises.


Sign in / Sign up

Export Citation Format

Share Document