scholarly journals Phase Portraits of the Autonomous Duffing Single-Degree-of-Freedom Oscillator with Coulomb Dry Friction

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Nikola Jakšić

The paper presents phase portraits of the autonomous Duffing single-degree-of-freedom system with Coulomb dry friction in its δ-γ-ε parameter space. The considered nonlinearities of the cubic stiffness (ε) and Coulomb dry friction (γ) are widely used throughout the literature. It has been shown that there can be more than one sticking region in the phase plane. It has also been shown that an equilibrium point occurs at the critical combinations of values of the parameters γ and ε which gives rise to zero eigenvalue of the linearised system. The unstable limit cycle may appear in the case of negative viscous damping (δ); δ<0.

1986 ◽  
Vol 108 (2) ◽  
pp. 313-318 ◽  
Author(s):  
A. Sinha ◽  
J. H. Griffin ◽  
R. E. Kielb

This paper deals with the stabilizing effects of dry friction on torsional blade flutter. A lumped parameter model with single degree of freedom per blade has been used to represent the rotor stage. The well-known cascade theories for incompressible and supersonic flows have been used to determine the allowable increase in fluid velocity relative to the blade. It has been found that the effectiveness of friction dampers in controlling flutter can be substantial.


Author(s):  
J.-W. Liang ◽  
B. F. Feeny

Abstract This paper proposes a simple identification algorithm for estimating both viscous and dry friction in harmonically forced single-degree-of-freedom mechanical vibration systems. The method is especially suitable for the identification of systems for which the traditional free-vibration scheme is difficult to implement. Numerical simulations are included to show the effectiveness of the proposed algorithm. A numerical perturbation study is also included for insight on the robustness of the algorithm.


Author(s):  
Wayne E. Whiteman ◽  
Aldo A. Ferri

Abstract A multi-mode analysis of a beam-like structure undergoing transverse vibration and subjected to a displacement-dependent friction force is conducted. The level of displacement-dependence is governed by a ramp angle and spring arrangement as discussed in Part I. The system is studied by using harmonic balance as an approximate analytical solution and then by using a time integration method. The damping characteristics of the system are studied in detail. The results qualitatively agree with those obtained using a single-degree-of-freedom analysis of this system reported in Part I. Interesting findings include the appearance of internal resonance peaks when multiple modes are considered. Also, as with the earlier single-degree-of-freedom study, two dynamic response solutions exist at certain parameter values. It is found that the ability to control the amplitude of the response is a function of the frequency range considered. In general, near modal resonance peaks, the amplitude of the response decreases with increasing ramp angle. However, in an “overlapping” region between resonance peaks, the amplitude of the response actually increases with increasing ramp angle. Detailed analysis of the damping characteristics indicate that the dry friction damper is most effective in damping the fundamental mode. The other critical observation is that the damping contribution from the displacement-dependent dry friction damper is “viscous-like” in nature and relatively insensitive to the amplitude of the response. This result suggests that in the case of turbine or compressor blades, this type of damping arrangement may be effective in the suppression of flutter.


2021 ◽  
Vol 159 ◽  
pp. 104258
Author(s):  
Jeonghwan Lee ◽  
Lailu Li ◽  
Sung Yul Shin ◽  
Ashish D. Deshpande ◽  
James Sulzer

Sign in / Sign up

Export Citation Format

Share Document