scholarly journals Electronic Structure and Optical Properties ofGaAs1-xBixAlloy

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xindong You ◽  
Renjie Zhou

A first-principles study has been performed to investigate the structural and electronic properties of theGaAs1-xBixsystem. The simulations are based upon the generalized gradient approximation (GGA) within the framework of density functional theory (DFT). Calculations are performed to different Bi concentrations. The lattice constant ofGaAs1-xBixincreases with Bi concentration while the alloy remains in the zinc-blende structure. The band gap ofGaAs1-xBixclearly shrinks with the Bi concentration. The optical transition of Bi dopant in GaAs exhibits a red shift. Besides, other important optical constants, such as the dielectric function, reflectivity, refractive index, and loss function also change significantly.

2012 ◽  
Vol 26 (29) ◽  
pp. 1250151
Author(s):  
Z. H. YU ◽  
C. Y. LI ◽  
H. Z. LIU

Using the first-principles plane wave pseudopotential method, the structural and electronic properties of intermetallic compound SrLiSb have been studied within generalized gradient approximation in the frame of density functional theory. The calculations of lattice parameters are in well agreement with the available experimental data. The geometry optimization results indicated the compressibility of SrLiSb is anisotropic under high pressure. The energy band structure and density of states of SrLiSb were also calculated, indicating that SrLiSb has an electronic phase transition from direct-gap semiconductor to indirect-gap semiconductor at approximate 8 GPa.


RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 95353-95359 ◽  
Author(s):  
D. P. Rai ◽  
A. Shankar ◽  
Sandeep Sandeep ◽  
M. P. Ghimire ◽  
R. Khenata ◽  
...  

A density functional theory (DFT) approach employing generalized gradient approximation (GGA) and the modified Becke Johnson (TB-mBJ) potential has been used to study the electronic and thermoelectric (TE) properties of ZrxHf1−x−yTayNiSn.


2005 ◽  
Vol 864 ◽  
Author(s):  
Jinyu Zhang

AbstractUsing density functional theory (DFT) calculations within the generalized gradient approximation (GGA), we have investigated the structure, energies and diffusion behavior of Si defects including interstitial, vacancy, FFCD and divacancy in various charged states.


2017 ◽  
Vol 2 (1) ◽  
pp. 26
Author(s):  
Diah Angraina Fitri

Intisari – Graphene adalah material yang terdiri dari atom-atom Carbon. Graphene sangat menarik untuk dibahas terkait pada pemanfaatan dalam bidang semikonduktor. Dalam penelitian ini, diamati struktur elektronik pada struktur kristal layer tunggal / monolayer pada graphene menggunakan perhitungan first-principles berbasis metode density functional theory (DFT) dengan menggunakan software PHASE/0. Dan juga  menggunakan  Generalized Gradient Approximation (GGA). Dalam penelitian ini, didapatkan bahwa struktur kristal satu layer / monolayer dari graphene tidak memiliki sifat celah pita energi (no bandgap). Sifat ini sangat berguna dalam aplikasi perangkat material dalam menyimpan energi. Kata Kunci – struktru elektronik, Graphene layer tunggal, Density Functional Theory (DFT), PHASE/0


2018 ◽  
Vol 6 (2) ◽  
pp. 53
Author(s):  
Salah Daoud ◽  
Rabie Mezouar ◽  
Abdelfateh Benmakhlouf

The present work aims to investigate the structural parameters and the piezoelectric coefficients of cubic zinc-blende Aluminum phosphide (AlP) under high pressure up to 21 GPa, using plane wave-pseudopotential (PW-PP) approach in the framework of the density functional theory (DFT) and the density functional perturbation theory (DFPT) with the generalized gradient approximation (GGA) for the exchange-correlation functional. The results obtained are analyzed and compared with other data of the literature. The structural parameters and the piezoelectric coefficients calculated here agree well with other data of the literature. We found also that both the direct and converse piezoelectric coefficients increase with increasing pressure up to 21 GPa. 


2007 ◽  
Vol 62 (7) ◽  
pp. 971-976 ◽  
Author(s):  
Chang-Ming Fang ◽  
Joseph Bauer ◽  
Jean-Yves Saillard ◽  
Jean-Francois Halet

Abstract The structural arrangements of the graphite intercalates LnC6 (Ln = La, Ce, Nd and Yb) were investigated using Density Functional Theory (DFT) within the Generalized Gradient Approximation (GGA). The EuC6-type structure (AαAβ AαAβ AαA stacking) is slightly energetically preferred for La and Ce, whereas with the other rare earth metals almost the same cohesive energies are found for the three different atomic arrangements AαAαAαAαAαA. . ., AαAβ AαAβ AαA. . ., and AαAβ AγAαAβ A. . . A rather important charge transfer occurs from the metals to the carbon sheets, with the electrons partially occupying the bottom of the carbon π* band. As a consequence, a lengthening of the C-C bond lengths of ca. 0.02 Å is computed with respect to the C-C bonds in graphite. Two-dimensional metallic character is expected for LaC6 according to its band structure.


2010 ◽  
Vol 24 (10) ◽  
pp. 953-962 ◽  
Author(s):  
L. HUA ◽  
L. WANG ◽  
L. F. CHEN

We have investigated the electronic and magnetic properties of GaC 1-x Mn 3 (x = 0, 0.125, 0.25) using first-principles density functional theory within the generalized gradient approximation (GGA) + U schemes. The crystal structures of the compounds are cubic for x = 0, 0.125, 0.25. The lattice parameters and unit cell volume decrease as the C vacancy increase. Our spin polarized calculations give metallic ground state for x = 0, 0.125, 0.25. The magnetic structure for x = 0, 0.125 are antiferromagnetic, while for x = 0.25 it is ferromagnetic. From the density of states (DOS), the hybridization between the C 2p and Mn 3d state is the main reason for magnetic transition.


2020 ◽  
Vol 98 (4) ◽  
pp. 357-363
Author(s):  
Tahsin Özer

Using the density functional theory (DFT) calculations, the structural optimization of the YAl3 compound was performed on the generalized gradient approximation (GGA) with quantum ESPRESSO (QE) software. Elastic constants were calculated after the optimization process. Polycrystalline quantities, such as bulk and shear modulus, Young’s modulus, and Poisson’s ratio, were determined using calculated elastic constants. The anisotropy of the compound was studied in detail. As a result of the calculations made, it was observed that the YAl3 compound exhibited mechanically stable structure and anisotropic behavior. In the ht2-YAl3 phase, the effect of pressure on physical properties was investigated in detail. The obtained results were compared with the existing experimental and other theoretical data.


2015 ◽  
Vol 29 (01) ◽  
pp. 1450256 ◽  
Author(s):  
Wen Huang ◽  
Haichuan Chen

The elastic and thermodynamic properties of Re C 2 (Re = Ho , Nd , Pr ) have been investigated by using the first-principles density functional theory within the generalized gradient approximation. The computed lattice constants of Re C 2 are in agreement with the experimental data. The calculated elastic constants reveal that all compounds are mechanically stable. The shear modulus, Young's modulus, Poisson's ratio σ, the ratio B/G, shear anisotropy and elastic anisotropy are also calculated. Finally, the Vicker hardness, Debye temperature, melting point and thermal conductivity have been predicted.


2012 ◽  
Vol 217-219 ◽  
pp. 1811-1814
Author(s):  
Xue Tao Hu ◽  
Qiang Luo ◽  
Zeng Ling Ran

Using periodic density functional theory within the generalized-gradient approximation to electron exchange and correlation, we have studied S adsorption four-fold hollow site on Fe(100) in different hydrostatic pressure. We find that the adsorption height decreases with hydrostatic pressure increasing is non-monotonic. The adsorption energy decreases with an increase with pressure is monotonic and we have obtained density of states is almost unchanged, the adsorption energy change is mainly caused by lattice deformation in the hydrostatic pressure, and the adsorption energies increase linearly with pressure.


Sign in / Sign up

Export Citation Format

Share Document