First-principles investigation of the elastic and thermodynamic properties of ReC2 (Re = Ho, Nd, Pr)

2015 ◽  
Vol 29 (01) ◽  
pp. 1450256 ◽  
Author(s):  
Wen Huang ◽  
Haichuan Chen

The elastic and thermodynamic properties of Re C 2 (Re = Ho , Nd , Pr ) have been investigated by using the first-principles density functional theory within the generalized gradient approximation. The computed lattice constants of Re C 2 are in agreement with the experimental data. The calculated elastic constants reveal that all compounds are mechanically stable. The shear modulus, Young's modulus, Poisson's ratio σ, the ratio B/G, shear anisotropy and elastic anisotropy are also calculated. Finally, the Vicker hardness, Debye temperature, melting point and thermal conductivity have been predicted.

2015 ◽  
Vol 93 (4) ◽  
pp. 409-412 ◽  
Author(s):  
Wen Huang ◽  
Lijun Yang

The electronic, mechanical, and thermodynamic properties of europium carbide (EuC2) are investigated using first-principles density functional theory within the generalized gradient approximation. The calculated elastic constants indicate that EuC2 is mechanically stable. The shear modulus, Young’s modulus, Poisson’s ratio, the bulk modulus – shear modulus ratio, shear anisotropy, and elastic anisotropy are also calculated. Finally, we obtain the Vickers hardness, averaged sound velocity, longitudinal sound velocity, transverse sound velocity, Debye temperature, melting point, and thermal conductivity of EuC2.


2020 ◽  
Vol 10 (11) ◽  
pp. 3914
Author(s):  
Per Söderlind ◽  
Aurélien Perron ◽  
Emily E. Moore ◽  
Alexander Landa ◽  
Tae Wook Heo

Density-functional theory (DFT) is employed to investigate the thermodynamic and ground-state properties of bulk uranium tri-iodide, UI3. The theory is fully relativistic and electron correlations, beyond the DFT and generalized gradient approximation, are addressed with orbital polarization. The electronic structure indicates anti-ferromagnetism, in agreement with neutron diffraction, with band gaps and a non-metallic system. Furthermore, the formation energy, atomic volume, crystal structure, and heat capacity are calculated in reasonable agreement with experiments, whereas for the elastic constants experimental data are unavailable for comparison. The thermodynamical properties are modeled within a quasi-harmonic approximation and the heat capacity and Gibbs free energy as functions of temperature agree with available calculation of phase diagram (CALPHAD) thermodynamic assessment of the experimental data.


RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 95353-95359 ◽  
Author(s):  
D. P. Rai ◽  
A. Shankar ◽  
Sandeep Sandeep ◽  
M. P. Ghimire ◽  
R. Khenata ◽  
...  

A density functional theory (DFT) approach employing generalized gradient approximation (GGA) and the modified Becke Johnson (TB-mBJ) potential has been used to study the electronic and thermoelectric (TE) properties of ZrxHf1−x−yTayNiSn.


2005 ◽  
Vol 864 ◽  
Author(s):  
Jinyu Zhang

AbstractUsing density functional theory (DFT) calculations within the generalized gradient approximation (GGA), we have investigated the structure, energies and diffusion behavior of Si defects including interstitial, vacancy, FFCD and divacancy in various charged states.


2013 ◽  
Vol 27 (25) ◽  
pp. 1350141 ◽  
Author(s):  
ARVIDS STASHANS ◽  
YETZABEL FLORES

Density functional theory and generalized gradient approximation have been employed to study Mg , Si and O vacancies in the Mg 2 SiO 4 forsterite mineral. Microstructure of defect equilibrium geometries, electronic properties as well as chemical bonding in the region surrounding each one of the vacancies have been computed and discussed in detail. It is found that vacancies tend to increase covalent character of the chemical bonding for atoms situated in their vicinity independently of the type of vacancy. Nevertheless, obtained atomic distortion in the region surrounding vacancies generally obeys Coulomb electrostatic interaction law. Local energy states are found in the band-gap region due to the occurrence of vacancy-type defects. These findings are discussed in light of the available experimental data.


2014 ◽  
Vol 1047 ◽  
pp. 41-44
Author(s):  
Mamta Chauhan ◽  
Dinesh Chandra Gupta ◽  
Idris Hamid Bhat

We have performed ab-initio calculations to investigate the structural and electronic behavior of TiN in the stable B1 and high pressure B2 phases using pseudo-potential plane wave approach within the framework of density functional theory. The calculated results show agreement with the experimental data. The present electronic behavior, determined by total energy calculations with generalized gradient approximation for exchange and correlation interactions, is observed to be similar in both B1 and B2 phases showing metallic, covalent as well as ionic bonding of TiN. The investigations in B2 phase need validation experimentally as well as theoretically.


2021 ◽  
Vol 252 ◽  
pp. 03039
Author(s):  
Qiang Wei-rong ◽  
Wang Xiao-mei ◽  
Liu Wei-qi

Based on density functional theory(DFT), using virtual crystal approximation and generalized gradient approximation(GGA)with pseudopotential method, the lattices and energies for five crystallines of vanadium hydrides are optimized and calculated. The phonon densities of states are calculated based on density functional perturbation theory(DFPT). The standard Heat capacities, Entropies, Helmholtz free energies and Gibbs functions of vanadium and its hydride are deduced at 298.15K. The calculated results are discussed and compared with experimental data.


2017 ◽  
Vol 2 (1) ◽  
pp. 26
Author(s):  
Diah Angraina Fitri

Intisari – Graphene adalah material yang terdiri dari atom-atom Carbon. Graphene sangat menarik untuk dibahas terkait pada pemanfaatan dalam bidang semikonduktor. Dalam penelitian ini, diamati struktur elektronik pada struktur kristal layer tunggal / monolayer pada graphene menggunakan perhitungan first-principles berbasis metode density functional theory (DFT) dengan menggunakan software PHASE/0. Dan juga  menggunakan  Generalized Gradient Approximation (GGA). Dalam penelitian ini, didapatkan bahwa struktur kristal satu layer / monolayer dari graphene tidak memiliki sifat celah pita energi (no bandgap). Sifat ini sangat berguna dalam aplikasi perangkat material dalam menyimpan energi. Kata Kunci – struktru elektronik, Graphene layer tunggal, Density Functional Theory (DFT), PHASE/0


2013 ◽  
Vol 27 (24) ◽  
pp. 1350130 ◽  
Author(s):  
YAN CHENG ◽  
HAI-HUA CHEN ◽  
FAN-XIANG XUE ◽  
GUANG-FU JI ◽  
MIN GONG

The phase transition, elastic and thermodynamic properties of beryllium (Be) have been studied at high pressures by plane-wave ultrasoft pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA). It is found that the hcp → bcc phase transition of Be occurs at 506 GPa (T = 0 K ) and occurs at 1200 K (P = 0 GPa ). The coefficients of linear thermal expansion of the hexagmal close-packed (hcp), bcc and orthorhombic Be have been calculated. The hcp → orthorhombic → bcc phase transitions do not occur in all range of pressures, that is to say, the orthorhombic Be is not an intermediate phase between the hcp and bcc Be. The obtained bulk modulus (B0) are 113.2 GPa (for hcp Be), 113.1 GPa (for bcc Be) and 70.5 GPa (for orthorhombic Be), respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xindong You ◽  
Renjie Zhou

A first-principles study has been performed to investigate the structural and electronic properties of theGaAs1-xBixsystem. The simulations are based upon the generalized gradient approximation (GGA) within the framework of density functional theory (DFT). Calculations are performed to different Bi concentrations. The lattice constant ofGaAs1-xBixincreases with Bi concentration while the alloy remains in the zinc-blende structure. The band gap ofGaAs1-xBixclearly shrinks with the Bi concentration. The optical transition of Bi dopant in GaAs exhibits a red shift. Besides, other important optical constants, such as the dielectric function, reflectivity, refractive index, and loss function also change significantly.


Sign in / Sign up

Export Citation Format

Share Document