scholarly journals Distributed Fault Detection for a Class of Nonlinear Stochastic Systems

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Bingyong Yan ◽  
Huazhong Wang ◽  
Huifeng Wang

A novel distributed fault detection strategy for a class of nonlinear stochastic systems is presented. Different from the existing design procedures for fault detection, a novel fault detection observer, which consists of a nonlinear fault detection filter and a consensus filter, is proposed to detect the nonlinear stochastic systems faults. Firstly, the outputs of the nonlinear stochastic systems act as inputs of a consensus filter. Secondly, a nonlinear fault detection filter is constructed to provide estimation of unmeasurable system states and residual signals using outputs of the consensus filter. Stability analysis of the consensus filter is rigorously investigated. Meanwhile, the design procedures of the nonlinear fault detection filter are given in terms of linear matrix inequalities (LMIs). Taking the influence of the system stochastic noises into consideration, an outstanding feature of the proposed scheme is that false alarms can be reduced dramatically. Finally, simulation results are provided to show the feasibility and effectiveness of the proposed fault detection approach.

2011 ◽  
Vol 128-129 ◽  
pp. 276-279 ◽  
Author(s):  
Ai Qing Zhang

-This paper deals with the problem of fault detection filter (FDF) design for singular stochastic systems . By using an observer-based FDF as a residual generator,the robust fault detection is formulated as a filtering problem. Based on linear matrix inequalities (LMIS) techniques and stability theory of stochastic differential equations, stochastic Lyapunov function method is adopted to design a FDF such that, the filter residual system is sensitive to the fault but robust to the exogenous disturbance.Sufficient conditions are proposed to guarantee the stochastically mean-square stablility with an performance for the faulty detection system. The existence of a FDF for the system under consideration is achieved in terms of LMIS . Moreover, the expressions of desired fault detection filter are given.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Liyuan Hou ◽  
Shouming Zhong ◽  
Hong Zhu ◽  
Yong Zeng ◽  
Lin Shi

This paper purposes the design of a fault detection filter for stochastic systems with mixed time-delays and parameter uncertainties. The main idea is to construct some new Lyapunov functional for the fault detection dynamics. A new robustly asymptotically stable criterion for the systems is derived through linear matrix inequality (LMI) by introducing a comprehensive different Lyapunov-Krasovskii functional. Then, the fault detection filter is designed in terms of linear matrix inequalities (LMIs) which can be easily checked in practice. At the same time, the error between the residual signal and the fault signal is made as small as possible. Finally, an example is given to illustrate the effectiveness and advantages of the proposed results.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Dušan Krokavec ◽  
Anna Filasová ◽  
Pavol Liščinský

The paper is concerned with the fault detection filter design requirements that relax the existing conditions reported in the previous literature by adapting the unitary system principle in approximation of fault detection filter transfer function matrix for continuous-time linear MIMO systems. Conditions for the existence of a unitary construction are presented under which the fault detection filter with a unitary transfer function can be designed to provide high residual signals sensitivity with respect to faults. Otherwise, reflecting the emplacement of singular values in unitary construction principle, an associated structure of linear matrix inequalities with built-in constraints is outlined to design the fault detection filter only with a Hurwitz transfer function. All proposed design conditions are verified by the numerical illustrative examples.


2012 ◽  
Vol 503-504 ◽  
pp. 1389-1392
Author(s):  
Li Min Chen

A robust fault detection approach for network-based system is discussed in this paper. The fault detection problem is converted into fault detection filter design. The network-induced delay is assumed to have both the upper bound and the lower bound, which is more general compared with only considering the upper bound. The Lyapunov-Krasovskii functional and the linear matrix inequality (LMI)-based procedure are adopted to design the filter. And the filter can guarantee that the estimation error satisfies the H∞ constraint. Fault detection filter is designed for a flight control system and the effectiveness is verified by the simulation results.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2127
Author(s):  
Yanqin Wang ◽  
Weijian Ren ◽  
Zhuoqun Liu ◽  
Jing Li ◽  
Duo Zhang

Continuous stirring tank reactors are widely used in the chemical production process, which is always accompanied by nonlinearity, time delay, and uncertainty. Considering the characteristic of the actual reaction of the continuous stirring tank reactors, the fault detection problem is studied in terms of the T-S fuzzy model. Through a fault detection filter performance analysis, the sufficient condition for the filtering error dynamics is obtained, which meets the exponential stability in the mean square sense and the given performance requirements. The design of the fault detection filter is transformed into one that settles the convex optimization issue of linear matrix inequality. Numerical analysis shows the effectiveness of this scheme.


2012 ◽  
Vol 503-504 ◽  
pp. 1488-1492 ◽  
Author(s):  
Yu Cai Ding ◽  
Hong Zhu ◽  
Shou Ming Zhong ◽  
Yu Ping Zhang

This paper deals with the problem of fault detection for Markov jump systems (MJSs) with time-varying delays and partly unknown transition probabilities. The aim of this paper is to design a fault detection filter such that the filtering error system is stochastically asymptotically stable with an attenuation level. By using the Lyapunov-Krasovskii functional, a sufficient condition for the existence of the desired fault detection filter is formulated in terms of linear matrix inequalities. A numerical example is given to illustrate the effectiveness of the proposed main results.


Author(s):  
Zhaoke Ning ◽  
Jinyong Yu ◽  
Tong Wang

In this article, the event-triggered fault detection filter design problem is concerned with uncertain stochastic systems subject to package dropouts. First, a filter structure is constructed to achieve the desired fault detection objective. Second, an integrated model with an event-triggered scheme and a Bernoulli stochastic process are employed to save the limited network resources and describe the package dropouts phenomenon, which always appears in the real network environment. A new sufficient condition is provided to ensure that the obtained residual system is mean square robustly exponentially stable and satisfies the desired detection performance. Then, a novel co-design algorithm is derived to obtain the parameters of filter and event-triggered scheme. Finally, two simulation examples are provided to verify the effectiveness of the proposed design scheme.


Sign in / Sign up

Export Citation Format

Share Document