scholarly journals Robust Synchronization of Fractional-Order Hyperchaotic Systems Subjected to Input Nonlinearity and Unmatched External Perturbations

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Teh-Lu Liao ◽  
Jun-Juh Yan ◽  
Jen-Fuh Chang

This paper investigates the robust synchronization problem for a class of fractional-order hyperchaotic systems subjected to unmatched uncertainties and input nonlinearity. Based on the sliding mode control (SMC) technique, this approach only uses a single controller to achieve chaos synchronization, which reduces the cost and complexity for synchronization control implementation. As expected, the error states can be driven to zero or into predictable bounds for matched and unmatched perturbations, respectively, even with input nonlinearity.

Author(s):  
Xin Meng ◽  
Baoping Jiang ◽  
Cunchen Gao

This paper considers the Mittag-Leffler projective synchronization problem of fractional-order coupled systems (FOCS) on the complex networks without strong connectedness by fractional sliding mode control (SMC). Combining the hierarchical algorithm with the graph theory, a new SMC strategy is designed to realize the projective synchronization between the master system and the slave system, which covers the globally complete synchronization and the globally anti-synchronization. In addition, some novel criteria are derived to guarantee the Mittag-Leffler stability of the projective synchronization error system. Finally, a numerical example is given to illustrate the validity of the proposed method.


2020 ◽  
Vol 42 (8) ◽  
pp. 1448-1460 ◽  
Author(s):  
Majid Parvizian ◽  
Khosro Khandani ◽  
Vahid Johari Majd

In this paper, state estimation and adaptive sliding mode control (SMC) of uncertain fractional-order Markovian jump systems (FO-MJSs) with time delay and input nonlinearity are considered. A non-fragile observer is proposed to estimate the system states, and an observer-based adaptive sliding mode controller is synthesized to ensure the reachability of the sliding surfaces in the state-estimation space in finite time. The sufficient condition for stochastic stability of the error system and sliding mode dynamics is derived in the form of linear matrix inequalities (LMIs). Finally, some numerical examples are presented to illustrate the effectiveness of the proposed method.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Lin Wang ◽  
Chunzhi Yang

Synchronization problem for a class of uncertain fractional order chaotic systems is studied. Some fundamental lemmas are given to show the boundedness of a complicated infinite series which is produced by differentiating a quadratic Lyapunov function with fractional order. By using the fractional order extension of the Lyapunov stability criterion and the proposed lemma, stability of the closed-loop system is analyzed, and two sufficient conditions, which can enable the synchronization error to converge to zero asymptotically, are driven. Finally, an illustrative example is presented to confirm the proposed theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yan-Ping Wu ◽  
Guo-Dong Wang

The synchronization between fractional-order hyperchaotic systems and integer-order hyperchaotic systems via sliding mode controller is investigated. By designing an active sliding mode controller and choosing proper control parameters, the drive and response systems are synchronized. Synchronization between the fractional-order Chen chaotic system and the integer-order Chen chaotic system and between integer-order hyperchaotic Chen system and fractional-order hyperchaotic Rössler system is used to illustrate the effectiveness of the proposed synchronization approach. Numerical simulations coincide with the theoretical analysis.


2020 ◽  
Vol 25 (1) ◽  
pp. 16
Author(s):  
Corina Plata ◽  
Pablo J. Prieto ◽  
Ramon Ramirez-Villalobos ◽  
Luis N. Coria

Hyperchaotic systems have applications in multiple areas of science and engineering. The study and development of these type of systems helps to solve diverse problems related to encryption and decryption of information. In order to solve the chaos synchronization problem for a hyperchaotic Lorenz-type system, we propose an observer based synchronization under a master-slave configuration. The proposed methodology consists of designing a sliding-mode observer (SMO) for the hyperchaotic system. In contrast, this type of methodology exhibits high-frequency oscillations, commonly known as chattering. To solve this problem, a fuzzy-based SMO system was designed. Numerical simulations illustrate the effectiveness of the synchronization between the hyperchaotic system obtained and the proposed observer.


Sign in / Sign up

Export Citation Format

Share Document