scholarly journals Surgical Reconstruction with the Remnant Ligament Improves Joint Position Sense as well as Functional Ankle Instability: A 1-Year Follow-Up Study

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Kamizato Iwao ◽  
Deie Masataka ◽  
Fukuhara Kohei

Introduction. Chronic functional instability—characterized by repeated ankle inversion sprains and a subjective sensation of instability—is one of the most common residual disabilities after an inversion sprain. However, whether surgical reconstruction improves sensorimotor control has not been reported to date. The purpose of this study was to assess functional improvement of chronic ankle instability after surgical reconstruction using the remnant ligament.Materials and Methods. We performed 10 cases in the intervention group and 20 healthy individuals as the control group. Before and after surgical reconstruction, we evaluated joint position sense and functional ankle instability by means of a questionnaire.Results and Discussion. There was a statistically significant difference between the control and intervention groups before surgical reconstruction. Three months after surgery in the intervention group, the joint position sense was significantly different from those found preoperatively. Before surgery, the mean score of functional ankle instability in the intervention group was almost twice as low. Three months after surgery, however, the score significantly increased. The results showed that surgical reconstruction using the remnant ligament was effective not only for improving mechanical retensioning but also for ameliorating joint position sense and functional ankle instability.

2012 ◽  
Vol 47 (6) ◽  
pp. 627-634 ◽  
Author(s):  
Jeremy Witchalls ◽  
Gordon Waddington ◽  
Peter Blanch ◽  
Roger Adams

Context Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. Objective To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Design Descriptive laboratory study. Setting University clinical laboratory. Patients or Other Participants Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Intervention(s) Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Main Outcome Measure(s) Difference in scores between groups with stable and unstable ankles and between test repeats. Results Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). Conclusions The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus.


2019 ◽  
Vol 28 (6) ◽  
pp. 614-622 ◽  
Author(s):  
Dana M. Otzel ◽  
Chris J. Hass ◽  
Erik A. Wikstrom ◽  
Mark D. Bishop ◽  
Paul A. Borsa ◽  
...  

Context: Following a lateral ankle sprain, ∼40% of individuals develop chronic ankle instability (CAI), characterized by recurrent injury and sensations of giving way. Deafferentation due to mechanoreceptor damage postinjury is suggested to contribute to arthrogenic muscle inhibition (AMI). Whole-body vibration (WBV) has the potential to address the neurophysiologic deficits accompanied by CAI and, therefore, possibly prevent reinjury. Objective: To determine if an acute bout of WBV can improve AMI and proprioception in individuals with CAI. Design and Participants: The authors examined if an acute bout of WBV can improve AMI and proprioception in individuals with CAI with a repeated-measures design. A total of 10 young adults with CAI and 10 age-matched healthy controls underwent a control, sham, and WBV condition in randomized order. Setting: Biomechanics laboratory. Intervention: WBV. Main Outcome Measures: Motoneuron pool recruitment was assessed via Hoffmann reflex (H-reflex) in the soleus. Proprioception was evaluated using ankle joint position sense at 15° and 20° of inversion. Both were assessed prior to, immediately following, and 30 minutes after the intervention (pretest, posttest, and 30mPost, respectively). Results: Soleus maximum H-reflex:M-response (H:M) ratios were 25% lower in the CAI group compared with the control group (P = .03). Joint position sense mean constant error did not differ between groups (P = .45). Error at 15° in the CAI (pretest 0.8 [1.6], posttest 2.0 [2.8], 30mPost 2.0 [1.9]) and control group (pretest 0.8 [2.0], posttest 0.6 [2.9], 30mPost 0.5 [2.1]) did not improve post-WBV. Error at 20° did not change post-WBV in the CAI (pretest 1.3 [1.7], posttest 1.0 [2.4], 30mPost 1.5 [2.2]) or control group (pretest −0.3 [3.0], posttest 0.8 [2.1], 30mPost 0.6 [1.8]). Conclusion: AMI is present in the involved limb of individuals with CAI. The acute response following a single bout of WBV did not ameliorate the presence of AMI nor improve proprioception in those with CAI.


2004 ◽  
Vol 13 (2) ◽  
pp. 122-134 ◽  
Author(s):  
Cathleen Brown ◽  
Scott Ross ◽  
Rick Mynark ◽  
Kevin Guskiewicz

Context:Functional ankle instability (FAI) is difficult to identify and quantify.Objective:To compare joint position sense (JPS), time to stabilization (TTS), and electromy-ography (EMG) of ankle musculature in recreational athletes with and without FAI.Design:Case-control compared withttests and ANOVAs.Setting:Sports medicine research laboratory.Participants:20 recreational athletes.Main Outcome Measures:Passive angle reproduction, TTS, and mean EMG amplitude of the tibialis anterior, peroneals, lateral gastrocnemius, and soleus muscles during single-leg-jump landing.Results:No differences in JPS or medial-lateral TTS measures between groups. Significantly longer anterior-posterior TTS (P< .05) in the unstable ankle group. The stable ankle group had significantly higher mean EMG soleus amplitude after landing (P< .05). No other significant differences were found for mean EMG amplitudes before or after landing.Conclusions:Subjects with FAI demonstrated deficits in landing stability and soleus muscle activity during landing that may represent chronic adaptive changes following injury.


2017 ◽  
Vol 52 (4) ◽  
pp. 360-367 ◽  
Author(s):  
Andreia S. P. Sousa ◽  
João Leite ◽  
Bianca Costa ◽  
Rubim Santos

Context:  Despite extensive research on chronic ankle instability, the findings regarding proprioception have been conflicting and focused only on the injured limb. Also, the different components of proprioception have been evaluated in isolation. Objective:  To evaluate bilateral ankle proprioception in individuals with unilateral ankle instability. Design:  Cohort study. Setting:  Research laboratory center in a university. Patients or Other Participants:  Twenty-four individuals with a history of unilateral ankle sprain and chronic ankle instability (mechanical ankle instability group, n = 10; functional ankle instability [FAI] group, n = 14) and 20 controls. Main Outcome Measure(s):  Ankle active and passive joint position sense, kinesthesia, and force sense. Results:  We observed a significant interaction between the effects of limb and group for kinesthesia (F = 3.27, P = .049). Increased error values were observed in the injured limb of the FAI group compared with the control group (P = .031, Cohen d = 0.47). Differences were also evident for force sense (F = 9.31, P &lt; .001): the FAI group demonstrated increased error versus the control group (injured limb: P &lt; .001, Cohen d = 1.28; uninjured limb: P = .009, Cohen d = 0.89) and the mechanical ankle instability group (uninjured limb: P = .023, Cohen d = 0.76). Conclusions:  Individuals with unilateral FAI had increased error ipsilaterally (injured limb) for inversion movement detection (kinesthesia) and evertor force sense and increased error contralaterally (uninjured limb) for evertor force sense.


2021 ◽  
pp. 1-6
Author(s):  
Adam L. Haggerty ◽  
Janet E. Simon ◽  
Dustin R. Grooms ◽  
Jeffrey A. Russell

Context: Proprioception is an individual’s awareness of body position in 3-dimensional space. How proprioceptive acuity changes under varying conditions such as joint position, load, and concentric or eccentric contraction type is not well understood. In addition, a limitation of the variety of techniques to assess proprioception is the lack of clinically feasible methods to capture proprioceptive acuity. The purpose of this study was to implement a readily available instrument, a smartphone, in the clinical evaluation of knee active joint position sense and to determine how joint angle, joint loading, and quadriceps contraction type affect an individual’s active joint position sense. Design: Cross-over study. Methods: Twenty healthy, physically active university participants (10 women and 10 men: 21.4 [2.0] y; 1.73 [0.1] m; 70.9 [14.3] kg) were recruited. Individuals were included if they had no neurological disorder, no prior knee surgery, and no recent knee injury. The participants were given a verbal instruction to locate a target angle and then were tasked with reproducing the target angle without visual or verbal cues. An accelerometer application on a smartphone was used to assess the angle to the nearest tenth of a degree. Three variables, each with 2 levels, were analyzed in this study: load (weighted and unweighted), contraction type (eccentric and concentric), and joint position (20° and 70°). A repeated-measures analysis of variance was conducted to assess the within-subjects factors of load, contraction, and position. Results: A significant difference of 0.50° (0.19°) of greater error with eccentric versus concentric contraction (P = .02) type was identified. In addition, a significant interaction was found for contraction × position, with a mean increase in error of 0.98° (0.33°) at the 20° position when contracting eccentrically (P = .03). Conclusions: Contraction type, specifically eccentric contraction at 20°, showed significantly greater error than concentric contraction. This suggests that, during eccentric contractions of the quadriceps, there may be decreased proprioceptive sensitivity compared with concentric contractions.


Author(s):  
Jing Liu ◽  
Albert Yeung ◽  
Tao Xiao ◽  
Xiaopei Tian ◽  
Zhaowei Kong ◽  
...  

Tai Chi (TC) can be considered safe and effective intervention to improve pain and pain-related functional disability. However, it is unclear that whether aging individuals with Chronic Non-Specific Low Back Pain (CNS-LBP) can achieve positive results. This study, therefore, attempted to explore the effects of TC on pain and functional disability in CNS-LBP patients aged 50 years old or above. Forty-three individuals (aged 50 years old or above) with CNS-LBP were randomly assigned into three groups: Chen-Style TC group (n = 15), Core Stabilization training (CST) group (n = 15), and control group (n = 13). Participants in the TC group participated in Chen-style TC training program (three 60-min sessions per week for 12 weeks), individuals in CST group received 12-week Core Stabilization exercise on the Swiss ball, whereas individuals in the control group maintained their unaltered lifestyle. Pain intensity as primary outcome was measured using the Visual Analogue Scale (VAS), A BiodexSystem 3 isokinetic dynamometer was used to measure knee and ankle joint position sense (JPS) as secondary outcomes at baseline and after the 12-week intervention. TC and CST have significant effects in VAS for CNS-LBP patients (p< 0.01, TC group OR CST group versus control group in mean of the post-minus-pre assessment). However, the feature of joint position sense (JPS) of ankle inversion, ankle eversion and knee flexion did not occur, it showed no significant effects with TC and CST. TC was found to reduce pain, but not improve lower limb proprioception in patients with CNS-LBP. Future research with larger sample sizes will be needed to achieve more definitive findings on the effects of TC on both pain and lower limb proprioception in this population.


2018 ◽  
Vol 32 (12) ◽  
pp. 1581-1590 ◽  
Author(s):  
Gabriela Souza de Vasconcelos ◽  
Anelize Cini ◽  
Graciele Sbruzzi ◽  
Cláudia Silveira Lima

Objective: To investigate how dynamic neuromuscular control, postural sway, joint position sense, and incidence of ankle sprain are influenced by balance training in athletes compared with the control group in randomized clinical trials. Data sources: The search strategy included MEDLINE, Physical Therapy Evidence Database, Cochrane Central Register of Controlled Trials, and Latin American and Caribbean Center on Health Sciences Information. Randomized controlled trials (RCTs) were published by June of 2018. Methods: RCTs that evaluate the effectiveness of proprioception in these outcomes: dynamic neuromuscular control, postural sway, joint position, and the incidence of ankle sprains in athletes aged between 18 and 35 years. Two reviewers independently screened the searched records, extracted the data, and assessed risk of bias. The treatment effect sizes were pooled in a meta-analysis using the RevMan 5.2 software. Internal validity was assessed through topics suggested by Cochrane Collaborations. Results: Of the 12 articles included ( n = 1817), eight were in the meta-analysis ( n = 1722). The balance training reduced the incidence of ankle sprains in 38% compared with the control group ( RR: 0.62; 95% CI: 0.43–0.90). In relation to the dynamic neuromuscular control, the training showed increase in the distance of reach in the anterior (0.62 cm, 95% CI: 0.13–1.11), posterolateral (4.22 cm, 95% CI: 1.76–6.68), and posteromedial (3.65 cm, 95% CI: 1.03–6.26) through the Star Excursion Balance test. Furthermore, training seems to improve postural sway and joint position sense. Conclusion: Balance training reduces the incidence of ankle sprains and increases dynamic neuromuscular control, postural sway, and the joint position sense in athletes.


1999 ◽  
Vol 8 (1) ◽  
pp. 10-23 ◽  
Author(s):  
Semyon M. Slobounov ◽  
Shannon T. Poole ◽  
Robert F. Simon ◽  
Elena S. Slobounov ◽  
Jill A. Bush ◽  
...  

Assessment and enhancement of joint position sense is an inexact science at best. Anew method of evaluating and improving this sense using motion-tracking technology that incorporates computer visualization graphics was examined. Injured and healthy subjects were evaluated for their abilities to determine shoulder joint position, after abduction, in two tasks. The first was active reproduction of a passively placed angle. The second was visual reproduction of such an angle. A training protocol was added to determine the effectiveness of proprioceptive training in conjunction with 3-D visualization techniques. The primary findings were (a) a significant difference (p= .05) in the level of joint position sense in injured vs. healthy subjects; (b) significantly less accurate reproduction of larger shoulder abduction vs. the smaller movement in the active reproduction task; (c) significantly greater ability to accurately reproduce angles actively vs. visually; and (d) that proprioception training using 3-D visualization techniques significantly increased activeandvisual reproductions of passively placed angles.


Sign in / Sign up

Export Citation Format

Share Document