No correlation between joint position sense and force sense for measuring ankle proprioception in subjects with healthy and functional ankle instability

2014 ◽  
Vol 29 (9) ◽  
pp. 977-983 ◽  
Author(s):  
Chang-Yong Kim ◽  
Jong-Duk Choi ◽  
Hyeong-Dong Kim
2017 ◽  
Vol 52 (4) ◽  
pp. 360-367 ◽  
Author(s):  
Andreia S. P. Sousa ◽  
João Leite ◽  
Bianca Costa ◽  
Rubim Santos

Context:  Despite extensive research on chronic ankle instability, the findings regarding proprioception have been conflicting and focused only on the injured limb. Also, the different components of proprioception have been evaluated in isolation. Objective:  To evaluate bilateral ankle proprioception in individuals with unilateral ankle instability. Design:  Cohort study. Setting:  Research laboratory center in a university. Patients or Other Participants:  Twenty-four individuals with a history of unilateral ankle sprain and chronic ankle instability (mechanical ankle instability group, n = 10; functional ankle instability [FAI] group, n = 14) and 20 controls. Main Outcome Measure(s):  Ankle active and passive joint position sense, kinesthesia, and force sense. Results:  We observed a significant interaction between the effects of limb and group for kinesthesia (F = 3.27, P = .049). Increased error values were observed in the injured limb of the FAI group compared with the control group (P = .031, Cohen d = 0.47). Differences were also evident for force sense (F = 9.31, P < .001): the FAI group demonstrated increased error versus the control group (injured limb: P < .001, Cohen d = 1.28; uninjured limb: P = .009, Cohen d = 0.89) and the mechanical ankle instability group (uninjured limb: P = .023, Cohen d = 0.76). Conclusions:  Individuals with unilateral FAI had increased error ipsilaterally (injured limb) for inversion movement detection (kinesthesia) and evertor force sense and increased error contralaterally (uninjured limb) for evertor force sense.


2012 ◽  
Vol 47 (6) ◽  
pp. 627-634 ◽  
Author(s):  
Jeremy Witchalls ◽  
Gordon Waddington ◽  
Peter Blanch ◽  
Roger Adams

Context Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. Objective To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Design Descriptive laboratory study. Setting University clinical laboratory. Patients or Other Participants Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Intervention(s) Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Main Outcome Measure(s) Difference in scores between groups with stable and unstable ankles and between test repeats. Results Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). Conclusions The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Kamizato Iwao ◽  
Deie Masataka ◽  
Fukuhara Kohei

Introduction. Chronic functional instability—characterized by repeated ankle inversion sprains and a subjective sensation of instability—is one of the most common residual disabilities after an inversion sprain. However, whether surgical reconstruction improves sensorimotor control has not been reported to date. The purpose of this study was to assess functional improvement of chronic ankle instability after surgical reconstruction using the remnant ligament.Materials and Methods. We performed 10 cases in the intervention group and 20 healthy individuals as the control group. Before and after surgical reconstruction, we evaluated joint position sense and functional ankle instability by means of a questionnaire.Results and Discussion. There was a statistically significant difference between the control and intervention groups before surgical reconstruction. Three months after surgery in the intervention group, the joint position sense was significantly different from those found preoperatively. Before surgery, the mean score of functional ankle instability in the intervention group was almost twice as low. Three months after surgery, however, the score significantly increased. The results showed that surgical reconstruction using the remnant ligament was effective not only for improving mechanical retensioning but also for ameliorating joint position sense and functional ankle instability.


2004 ◽  
Vol 13 (2) ◽  
pp. 122-134 ◽  
Author(s):  
Cathleen Brown ◽  
Scott Ross ◽  
Rick Mynark ◽  
Kevin Guskiewicz

Context:Functional ankle instability (FAI) is difficult to identify and quantify.Objective:To compare joint position sense (JPS), time to stabilization (TTS), and electromy-ography (EMG) of ankle musculature in recreational athletes with and without FAI.Design:Case-control compared withttests and ANOVAs.Setting:Sports medicine research laboratory.Participants:20 recreational athletes.Main Outcome Measures:Passive angle reproduction, TTS, and mean EMG amplitude of the tibialis anterior, peroneals, lateral gastrocnemius, and soleus muscles during single-leg-jump landing.Results:No differences in JPS or medial-lateral TTS measures between groups. Significantly longer anterior-posterior TTS (P< .05) in the unstable ankle group. The stable ankle group had significantly higher mean EMG soleus amplitude after landing (P< .05). No other significant differences were found for mean EMG amplitudes before or after landing.Conclusions:Subjects with FAI demonstrated deficits in landing stability and soleus muscle activity during landing that may represent chronic adaptive changes following injury.


2020 ◽  
Vol 45 (4) ◽  
pp. 408-413
Author(s):  
Susanne Rein ◽  
Jochen Winter ◽  
Thomas Kremer ◽  
Frank Siemers ◽  
Ursula Range ◽  
...  

We recruited 25 patients after complete wrist denervation and 60 healthy adults to investigate conscious and unconscious proprioception of the wrist. Ipsi- and contralateral joint-position sense, force sense, and wrist reflexes were measured. The latter were triggered by a trapdoor, recording electromyographic signals from the extensor carpi radialis brevis, extensor carpi ulnaris, flexor carpi radialis, and flexor carpi ulnaris muscles. No significant differences were found for joint position sense, force sense, and wrist reflexes between both groups, except for reflex time of the flexor carpi ulnaris after denervation of the left wrist as compared with the left flexor carpi ulnaris in controls or in right operated wrists. At a mean follow-up of 32 months (range 8 to 133), we found no proprioceptive deficit of the conscious proprioceptive qualities of joint position sense, force sense, and the unconscious proprioceptive neuromuscular control of wrist reflex time for most muscles after complete wrist denervation. We conclude from this study that complete wrist denervation does not affect the proprioceptive senses of joint position, force sense, and reflex time of the wrist.


Author(s):  
Farideh Shamseddini Sofla ◽  
Mohammad Hadadi ◽  
Iman Rezaei ◽  
Negar Azhdari ◽  
Sobhan Sobhani

Abstract Background Chronic ankle instability (CAI) is a common condition following an ankle sprain. This study investigated the effects of whole body vibration (WBV) and shoe with an unstable surface training on balance, functional performance, strength, joint position sense in people with CAI. Method Thirty- four peoples with unilateral CAI were randomly assigned to three groups: WBV group, WBV with shoe with an unstable surface (WBV-S), and no treatment control group (CON). The WBV group received 4 weeks progressive WBV training and the WBV-S group received progressive WBV training with shoe with an unstable surface. Modified star excursion balance test (mSEBT)reach distance, Hop-Test, muscle strength, and joint position sense were measured at baseline and after the 4 weeks; Moreover, the mSEBT and Hop-Test were reassessed again 2 weeks post intervention. Results The result showed a significant group-by-time interaction for anterior and posterolateral directions of mSEBT. The reach distance of these directions at post-intervention and follow-up increased significantly compare to pre-intervention in the WBV and WBV-S groups but not significantly change in the CON group. The Hop test in the WBV-S group was significantly more at post-intervention and follow-up compared to pre-intervention. However, no significant changes were observed in WBV and CON groups. No significant changes were observed for mSEBT posteromedial direction, muscles strength, and joint position sense errors. Conclusion The 4 weeks WBV and WBV-S interventions could improve balance in peoples with CAI. Improvement in Hop test was only observed in the WBV-S group suggesting the added value of combining WBV and shoe with an unstable surface as an effective therapy compared to WBV training alone. The use of WBV and WBV-S were not associated with significant changes in strength and joint position sense variables over a four-week period. Trial registration This work registered in the Iranian Registry of Clinical Trials (IRCT20151118025105N4).


2019 ◽  
Vol 28 (6) ◽  
pp. 614-622 ◽  
Author(s):  
Dana M. Otzel ◽  
Chris J. Hass ◽  
Erik A. Wikstrom ◽  
Mark D. Bishop ◽  
Paul A. Borsa ◽  
...  

Context: Following a lateral ankle sprain, ∼40% of individuals develop chronic ankle instability (CAI), characterized by recurrent injury and sensations of giving way. Deafferentation due to mechanoreceptor damage postinjury is suggested to contribute to arthrogenic muscle inhibition (AMI). Whole-body vibration (WBV) has the potential to address the neurophysiologic deficits accompanied by CAI and, therefore, possibly prevent reinjury. Objective: To determine if an acute bout of WBV can improve AMI and proprioception in individuals with CAI. Design and Participants: The authors examined if an acute bout of WBV can improve AMI and proprioception in individuals with CAI with a repeated-measures design. A total of 10 young adults with CAI and 10 age-matched healthy controls underwent a control, sham, and WBV condition in randomized order. Setting: Biomechanics laboratory. Intervention: WBV. Main Outcome Measures: Motoneuron pool recruitment was assessed via Hoffmann reflex (H-reflex) in the soleus. Proprioception was evaluated using ankle joint position sense at 15° and 20° of inversion. Both were assessed prior to, immediately following, and 30 minutes after the intervention (pretest, posttest, and 30mPost, respectively). Results: Soleus maximum H-reflex:M-response (H:M) ratios were 25% lower in the CAI group compared with the control group (P = .03). Joint position sense mean constant error did not differ between groups (P = .45). Error at 15° in the CAI (pretest 0.8 [1.6], posttest 2.0 [2.8], 30mPost 2.0 [1.9]) and control group (pretest 0.8 [2.0], posttest 0.6 [2.9], 30mPost 0.5 [2.1]) did not improve post-WBV. Error at 20° did not change post-WBV in the CAI (pretest 1.3 [1.7], posttest 1.0 [2.4], 30mPost 1.5 [2.2]) or control group (pretest −0.3 [3.0], posttest 0.8 [2.1], 30mPost 0.6 [1.8]). Conclusion: AMI is present in the involved limb of individuals with CAI. The acute response following a single bout of WBV did not ameliorate the presence of AMI nor improve proprioception in those with CAI.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bartłomiej Niespodziński ◽  
Andrzej Kochanowicz ◽  
Jan Mieszkowski ◽  
Elżbieta Piskorska ◽  
Małgorzata Żychowska

The aims of this study were (1) to assess the relationship between joint position (JPS) and force sense (FS) and muscle strength (MS) and (2) to evaluate the impact of long-term gymnastic training on particular proprioception aspects and their correlations. 17 elite adult gymnasts and 24 untrained, matched controls performed an active reproduction (AR) and passive reproduction (PR) task and a force reproduction (FR) task at the elbow joint. Intergroup differences and the relationship between JPS, FS, and MS were evaluated. While there was no difference in AR or PR between groups, absolute error in the control group was higher during the PR task (7.15 ± 2.72°) than during the AR task (3.1 ± 1.93°). Mean relative error in the control group was 61% higher in the elbow extensors than in the elbow flexors during 50% FR, while the gymnast group had similar results in both reciprocal muscles. There was no linear correlation between JPS and FS in either group; however, FR was negatively correlated with antagonist MS. In conclusion, this study found no evidence for a relationship between the accuracy of FS and JPS at the elbow joint. Long-term gymnastic training improves the JPS and FS of the elbow extensors.


Sign in / Sign up

Export Citation Format

Share Document