Assessing Functional Ankle Instability with Joint Position Sense, Time to Stabilization, and Electromyography

2004 ◽  
Vol 13 (2) ◽  
pp. 122-134 ◽  
Author(s):  
Cathleen Brown ◽  
Scott Ross ◽  
Rick Mynark ◽  
Kevin Guskiewicz

Context:Functional ankle instability (FAI) is difficult to identify and quantify.Objective:To compare joint position sense (JPS), time to stabilization (TTS), and electromy-ography (EMG) of ankle musculature in recreational athletes with and without FAI.Design:Case-control compared withttests and ANOVAs.Setting:Sports medicine research laboratory.Participants:20 recreational athletes.Main Outcome Measures:Passive angle reproduction, TTS, and mean EMG amplitude of the tibialis anterior, peroneals, lateral gastrocnemius, and soleus muscles during single-leg-jump landing.Results:No differences in JPS or medial-lateral TTS measures between groups. Significantly longer anterior-posterior TTS (P< .05) in the unstable ankle group. The stable ankle group had significantly higher mean EMG soleus amplitude after landing (P< .05). No other significant differences were found for mean EMG amplitudes before or after landing.Conclusions:Subjects with FAI demonstrated deficits in landing stability and soleus muscle activity during landing that may represent chronic adaptive changes following injury.

2012 ◽  
Vol 47 (6) ◽  
pp. 627-634 ◽  
Author(s):  
Jeremy Witchalls ◽  
Gordon Waddington ◽  
Peter Blanch ◽  
Roger Adams

Context Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. Objective To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Design Descriptive laboratory study. Setting University clinical laboratory. Patients or Other Participants Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Intervention(s) Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Main Outcome Measure(s) Difference in scores between groups with stable and unstable ankles and between test repeats. Results Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). Conclusions The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Kamizato Iwao ◽  
Deie Masataka ◽  
Fukuhara Kohei

Introduction. Chronic functional instability—characterized by repeated ankle inversion sprains and a subjective sensation of instability—is one of the most common residual disabilities after an inversion sprain. However, whether surgical reconstruction improves sensorimotor control has not been reported to date. The purpose of this study was to assess functional improvement of chronic ankle instability after surgical reconstruction using the remnant ligament.Materials and Methods. We performed 10 cases in the intervention group and 20 healthy individuals as the control group. Before and after surgical reconstruction, we evaluated joint position sense and functional ankle instability by means of a questionnaire.Results and Discussion. There was a statistically significant difference between the control and intervention groups before surgical reconstruction. Three months after surgery in the intervention group, the joint position sense was significantly different from those found preoperatively. Before surgery, the mean score of functional ankle instability in the intervention group was almost twice as low. Three months after surgery, however, the score significantly increased. The results showed that surgical reconstruction using the remnant ligament was effective not only for improving mechanical retensioning but also for ameliorating joint position sense and functional ankle instability.


2012 ◽  
Vol 21 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Cynthia J. Wright ◽  
Brent L. Arnold

Context:Force sense (FS), the proprioceptive ability to detect muscle-force generation, has been shown to be impaired in individuals with functional ankle instability (FAI). Fatigue can also impair FS in healthy individuals, but it is unknown how fatigue affects FS in individuals with FAI.Objective:To assess the effect of fatigue on ankle-eversion force-sense error in individuals with and without FAI. Design: Case control with repeated measures.Setting:Sports medicine research laboratory.Participants:32 individuals with FAI and 32 individuals with no ankle sprains or instability in their lifetime. FAI subjects had a history of ≥1 lateral ankle sprain and giving-way ≥1 episode per month.Interventions:Three eversion FS trials were captured per load (10% and 30% of maximal voluntary isometric contraction) using a load cell before and after a concentric eversion fatigue protocol.Main Outcome Measures:Trial error was the difference between the target and reproduction forces. Constant error (CE), absolute error (AE), and variable error (VE) were calculated from 3 trial errors. A Group × Fatigue × Load repeated-measures ANOVA was performed for each error.Results:There were no significant 3-way interactions or 2-way interactions involving group (all P > .05). CE and AE had a significant 2-way interaction between load and fatigue (CE: F1,62 = 8.704, P = .004; AE: F1,62 = 4.024, P = .049), and VE had a significant main effect for fatigue (F1,62 = 5.130, P = .027), all of which indicated increased FS error with fatigue at 10% load. However, at 30% load only VE increased with fatigue. The FAI group had greater error as measured by AE (F1,62 = 4.571, P = .036) but not CE or VE (P > .05).Conclusions:Greater AE indicates that FAI individuals are less accurate in their force production. Fatigue impaired force sense in all subjects equally. These deficits provide evidence of impaired proprioception with fatigue and in individuals with FAI.


2015 ◽  
Vol 24 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Tiffany Switlick ◽  
Thomas W. Kernozek ◽  
Stacey Meardon

Context:A relationship between altered postural control and injury has been reported in sports. Sensorimotor function serves a fundamental role in postural control and is not often studied in runners. Persons who sustain running injury may have altered sensorimotor function contributing to risk of injury or reinjury.Objectives:To determine if differences in knee and ankle proprioception or plantar sensation exist between injured and noninjured runners.Design:Retrospective case-control study.Setting:University campus.Participants:Twenty runners with a history of lower-extremity overuse injury and 20 noninjured runners were examined. Injured runners were subcategorized into 2 groups based on site of injury: foot/ankle and knee/hip.Main Outcome Measures:Active absolute joint-repositioning error of the ankle at 20° inversion and 10° eversion and the knee at 15° and 40° flexion was assessed using an isokinetic dynamometer. Vibratory threshold at the calcaneus, arch, and great toe was determined for each subject using a handheld electric sensory threshold instrument.Results:Runners in the injured-foot/ankle group had increased absolute error during ankle-eversion repositioning (6.55° ± 3.58°) compared with those in the noninjured (4.04° ± 1.78°, P = .01) and the hip/knee (3.63° ± 2.2°, P = .01) groups. Runners in the injured group, as a whole, had greater sensitivity in the arch of the plantar surface (2.94 ± 0.52 V) than noninjured runners (2.38 ± 0.53 V, P = .02).Conclusions:Differences in ankle-eversion proprioception between runners with a history of ankle and foot injuries and noninjured runners were observed. Runners with a history of injury also displayed an increased vibratory threshold in the arch region compared with noninjured runners. Poor ankle-joint-position sense and increased plantar sensitivity suggest altered sensorimotor function after injury. These factors may influence underlying postural control and contribute to altered loading responses commonly observed in injured runners.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jing Liu ◽  
Xue-Qiang Wang ◽  
Jie-Jiao Zheng ◽  
Yu-Jian Pan ◽  
Ying-Hui Hua ◽  
...  

Background. Tai Chi is a traditional Chinese medicine exercise used for improving neuromuscular function. This study aimed to investigate the effects of Tai Chi versus proprioception exercise program on neuromuscular function of the ankle in elderly people.Methods. Sixty elderly subjects were randomly allocated into three groups of 20 subjects per group. For 16 consecutive weeks, subjects participated in Tai Chi, proprioception exercise, or no structured exercise. Primary outcome measures included joint position sense and muscle strength of ankle. Subjects completed a satisfaction questionnaire upon study completion in Tai Chi and proprioception groups.Results. (1) Both Tai Chi group and proprioception exercise group were significantly better than control group in joint position sense of ankle, and there were no significant differences in joint position sense of ankle between TC group and PE group. (2) There were no significant differences in muscle strength of ankle among groups. (3) Subjects expressed more satisfaction with Tai Chi than with proprioception exercise program.Conclusions. None of the outcome measures on neuromuscular function at the ankle showed significant change posttraining in the two structured exercise groups. However, the subjects expressed more interest in and satisfaction with Tai Chi than proprioception exercise.


2013 ◽  
Vol 18 (2) ◽  
pp. 29-33 ◽  
Author(s):  
Carly May Green ◽  
Paul Comfort ◽  
Lee Herrington

Context:A reduction in joint position sense (JPS) is sometimes a consequence of shoulder injury that may adversely affect the ability to maintain dynamic joint stability.Objective:To compare shoulder JPS between previously injured and noninjured judokas.Design:Cohort study.Participants:Twenty-nine noninjured subjects (10.93 ± 3.45 years) and eleven injured subjects (15.09 ± 3.39 years).Main Outcome Measures:JPS was tested at 45° and 80°of shoulder external rotation at 90° of abduction.Results:No signifcant difference in JPS was found between previously injured and noninjured judokas at either joint position.Conclusion:Despite evidence that JPS acuity decreases following shoulder injury, this study did not demonstrate a difference in average error between previously injured and noninjured judokas. Uncontrolled confounding factors, such as age and time since injury, may have affected the results. Sport-specifc shoulder joint loading patterns may also be an important factor that affects JPS.


Author(s):  
Farideh Shamseddini Sofla ◽  
Mohammad Hadadi ◽  
Iman Rezaei ◽  
Negar Azhdari ◽  
Sobhan Sobhani

Abstract Background Chronic ankle instability (CAI) is a common condition following an ankle sprain. This study investigated the effects of whole body vibration (WBV) and shoe with an unstable surface training on balance, functional performance, strength, joint position sense in people with CAI. Method Thirty- four peoples with unilateral CAI were randomly assigned to three groups: WBV group, WBV with shoe with an unstable surface (WBV-S), and no treatment control group (CON). The WBV group received 4 weeks progressive WBV training and the WBV-S group received progressive WBV training with shoe with an unstable surface. Modified star excursion balance test (mSEBT)reach distance, Hop-Test, muscle strength, and joint position sense were measured at baseline and after the 4 weeks; Moreover, the mSEBT and Hop-Test were reassessed again 2 weeks post intervention. Results The result showed a significant group-by-time interaction for anterior and posterolateral directions of mSEBT. The reach distance of these directions at post-intervention and follow-up increased significantly compare to pre-intervention in the WBV and WBV-S groups but not significantly change in the CON group. The Hop test in the WBV-S group was significantly more at post-intervention and follow-up compared to pre-intervention. However, no significant changes were observed in WBV and CON groups. No significant changes were observed for mSEBT posteromedial direction, muscles strength, and joint position sense errors. Conclusion The 4 weeks WBV and WBV-S interventions could improve balance in peoples with CAI. Improvement in Hop test was only observed in the WBV-S group suggesting the added value of combining WBV and shoe with an unstable surface as an effective therapy compared to WBV training alone. The use of WBV and WBV-S were not associated with significant changes in strength and joint position sense variables over a four-week period. Trial registration This work registered in the Iranian Registry of Clinical Trials (IRCT20151118025105N4).


2005 ◽  
Vol 14 (2) ◽  
pp. 168-184 ◽  
Author(s):  
Jeffery L. Huston ◽  
Michelle A. Sandrey ◽  
Mathew W. Lively ◽  
Kevin Kotsko

Context:There is limited information on the effect of dynamic fatiguing of the plantar flexors on joint-position sense (JPS).Objective:To examine the effects of fatigue on JPS for ankle plantar flexion (PF) and dorsiflexion (DF).Design:A 2 × 2 factorial design.Setting:Research laboratory.Participants:20 healthy subjects (10 men, 10 women; age 21.75 ± 1.48 years).Interventions:The subjects were tested at 10° DF and 20° PF in the nonfatigued and fatigued conditions on a custom-built JPS device. To induce fatigue, subjects stood with both feet in the plantar-flexed position until they could no longer hold the posture.Main Outcome Measures:JPS absolute error was measured at 10° DF and 20° PF.Results:There was no significant main effect for condition, measurement, or interaction between condition and measurement.Conclusion:With no difference between conditions, the main controller of conscious JPS of the lower extremity might be the tibialis anterior.


Sign in / Sign up

Export Citation Format

Share Document