scholarly journals A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. M. Islam ◽  
M. R. I. Faruque ◽  
M. T. Islam

A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.

DYNA ◽  
2015 ◽  
Vol 82 (193) ◽  
pp. 9-15
Author(s):  
Iván Eduardo Díaz Pardo ◽  
Carlos Arturo Suárez Fajardo ◽  
Gustavo Adolfo Puerto Leguizamón

This paper presents the study of the ground plane effect in passband filters using metamaterial cells in Open Split Ring Resonators (OSRR) structures on microstrip substrates. Three different configurations have been proposed, namely: by removing partially the ground plane of the OSRR cell back end, by windows design over the ground plane at the back end of each cell and by placing a full ground plane. The conducted analysis shows that the filter transmission response featuring a ground plane including windows proved to be the most flattened with the middle bandwidth of the three configurations. On the other hand, the performance of these filters is similar to a conventional filter based on three-pole microstrip technology but with a considerable reduction in size of about 60%.


Author(s):  
Ajay V. G. ◽  
Parvathy A. R. ◽  
Thomaskutty Mathew

<span lang="EN-US">This paper reports a novel method for designing a miniaturized microstrip antenna with DGS based on CSRR array which operates in the frequency of 2.6GHz for low band WiMAX application. The proposed antenna is designed using ANSYS HFSS simulation software. The antenna with optimized parameters is fabricated using FR-4 substrate of thickness 1.6 mm. The simulated and measured performances of the antenna in terms of return loss, directivity and radiation patterns are presented in this work. When Complimentary Split Ring Resonators (CSRRs) array are placed on the ground plane, the resonant frequency is shifted  to a lower value and patch size is reduced .The measurements were taken and compared with the simulated results. The performance characteristics obtained from the measurements show that the proposed antenna is suited for WiMAX application at 2.6GHz.</span>


Sign in / Sign up

Export Citation Format

Share Document