scholarly journals High Strain Rate and Plastic Deformation Response of OFHC Copper by Finite Element Method

2015 ◽  
Vol 6 (0) ◽  
pp. 620854-620854 ◽  
Author(s):  
E. Etemadi ◽  
A. J. Zamani ◽  
M. V. Mousavi
2006 ◽  
Vol 306-308 ◽  
pp. 965-970
Author(s):  
Hyoung Seop Kim

Equal channel angular pressing (ECAP) is a convenient forming procedure among various severe plastic deformation processes. It is based on extruding material through specially designed entry and exit channel dies to produce an ultrafine grained microstructure. The properties of the materials obtained depend on the plastic deformation behaviour during ECAP, which is governed mainly by the die geometry, the material itself and the processing conditions. As the mechanical properties of the severely deformed material are directly related to the deformation history, understanding the phenomena associated with strain and strain rate development in the ECAP process is very important. In this study, the results of continuum modelling of ECAP are described in order to understand strain and strain developments. For this purpose, the results of modelling ECAP using the finite element method and analytical solution are presented for various geometric conditions. It was concluded that although deformation is nonuniform due to geometric effects, the strain and strain rate values obtained by the analytical solutions are not much different from the average results of the finite element method.


Author(s):  
H Jafarzadeh ◽  
K Abrinia

The microstructure evolution during recently developed severe plastic deformation method named repetitive tube expansion and shrinking of commercially pure AA1050 aluminum tubes has been studied in this paper. The behavior of the material under repetitive tube expansion and shrinking including grain size and dislocation density was simulated using the finite element method. The continuous dynamic recrystallization of AA1050 during severe plastic deformation was considered as the main grain refinement mechanism in micromechanical constitutive model. Also, the flow stress of material in macroscopic scale is related to microstructure quantities. This is in contrast to the previous approaches in finite element method simulations of severe plastic deformation methods where the microstructure parameters such as grain size were not considered at all. The grain size and dislocation density data were obtained during the simulation of the first and second half-cycles of repetitive tube expansion and shrinking, and good agreement with experimental data was observed. The finite element method simulated grain refinement behavior is consistent with the experimentally obtained results, where the rapid decrease of the grain size occurred during the first half-cycle and slowed down from the second half-cycle onwards. Calculations indicated a uniform distribution of grain size and dislocation density along the tube length but a non-uniform distribution along the tube thickness. The distribution characteristics of grain size, dislocation density, hardness, and effective plastic strain were consistent with each other.


2014 ◽  
Vol 8 (2) ◽  
Author(s):  
Ehsan Etemadi ◽  
Jamal Zamani ◽  
Alessandro Francesconi ◽  
Mohammad V. Mousavi ◽  
Cinzia Giacomuzzo

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Chithajalu Kiran Sagar ◽  
Amrita Priyadarshini ◽  
Amit Kumar Gupta ◽  
Tarun Kumar ◽  
Shreya Saxena

Abstract With advances in computational techniques, numerical methods such as finite element method (FEM) are gaining much of the popularity for analysis as these substitute the expensive trial and error experimental techniques to a great extent. Consequently, selection of suitable material models and determination of precise material model constants are one of the prime concerns in FEM. This paper presents a methodology to determine the Johnson-Cook constitutive equation constants (JC constants) of 97 W Tungsten heavy alloys (WHAs) under high strain rate conditions using machining tests in conjunction with Oxley’s predictive model and particle swarm optimization (PSO) algorithm. Currently, availability of the high strain rate data for 97 WHA are limited and consequently, JC constants for the same are not readily available. The overall methodology includes determination of three sets of JC constants, namely, M1 and M2 from the Split-Hopkinson pressure bar (SHPB) test data available in literature by using conventional optimization technique and artificial bee colony (ABC) algorithm, respectively. However, M3 is determined from machining tests using inverse identification method. To validate the identified JC constants, machining outputs (cutting forces, temperature, and shear strain) are predicted using finite element (FE) model by considering M1, M2, and M3 as input under different cutting conditions and then validated with corresponding experimental values. The predicted outputs obtained using JC constants M3 closely matched with that of the experimental ones with error percentage well within 10%.


Sign in / Sign up

Export Citation Format

Share Document