scholarly journals A Constitutive Model for the Annulus of Human Intervertebral Disc: Implications for Developing a Degeneration Model and Its Influence on Lumbar Spine Functioning

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
J. Cegoñino ◽  
V. Moramarco ◽  
A. Calvo-Echenique ◽  
C. Pappalettere ◽  
A. Pérez del Palomar

The study of the mechanical properties of the annulus fibrosus of the intervertebral discs is significant to the study on the diseases of lumbar intervertebral discs in terms of both theoretical modelling and clinical application value. The annulus fibrosus tissue of the human intervertebral disc (IVD) has a very distinctive structure and behaviour. It consists of a solid porous matrix, saturated with water, which mainly contains proteoglycan and collagen fibres network. In this work a mathematical model for a fibred reinforced material including the osmotic pressure contribution was developed. This behaviour was implemented in a finite element (FE) model and numerical characterization and validation, based on experimental results, were carried out for the normal annulus tissue. The characterization of the model for a degenerated annulus was performed, and this was capable of reproducing the increase of stiffness and the reduction of its nonlinear material response and of its hydrophilic nature. Finally, this model was used to reproduce the degeneration of the L4L5 disc in a complete finite element lumbar spine model proving that a single level degeneration modifies the motion patterns and the loading of the segments above and below the degenerated disc.

Author(s):  
Nadja Wilmanns ◽  
Agnes Beckmann ◽  
Luis Fernando Nicolini ◽  
Christian Herren ◽  
Rolf Sobottke ◽  
...  

Abstract Lumbar Lordotic correction (LLC), the gold standard treatment for Sagittal Spinal malalignment (SMA), and its effect on sagittal balance have been critically discussed in recent studies. This paper assesses the biomechanical response of the spinal components to LLC as an additional factor for the evaluation of LLC. Human lumbar spines (L2L5) were loaded with combined bending moments in Flexion (Flex)/Extension (Ex) or Lateral Bending (LatBend) and Axial Rotation (AxRot) in a physiological environment. We examined the dependency of AxRot range of motion (RoM) on the applied bending moment. The results were used to validate a Finite Element (FE) model of the lumbar spine. With this model, the biomechanical response of the intervertebral discs (IVD) and facet joints under daily motion was studied for different sagittal spinal alignment (SA) postures, simulated by a motion in Flex/Ex direction. Applied bending moments decreased AxRot RoM significantly (all P<0.001). A stronger decline of AxRot RoM for Ex than for Flex direction was observed (all P<0.0001). Our simulated results largely agreed with the experimental data (all R2>0.79). During daily motion, the IVD was loaded higher with increasing lumbar lordosis (LL) for all evaluated values at L2L3 and L3L4 and posterior Annulus Stress (AS) at L4L5 (all P<0.0476). The results of this study indicate that LLC with large extensions of LL may not always be advantageous regarding the biomechanical loading of the IVD. This finding may be used to improve the planning process of LLC treatments.


Volume 2 ◽  
2004 ◽  
Author(s):  
Volkan Esat ◽  
Memis Acar

In this study, the finite element (FE) technique was used in conjunction with multi-body modelling to simulate and analyse the dynamic behaviour of the spinal segments in order to investigate the effects of impact loadings on the lumbar spine. A 3-D multi-body model of the lumbar spine and an FE model of the L2-L3 motion segment were developed. Both models were validated for flexion and compression loadings, showing good agreements with a previously validated lumbar spine model. The predictions of the multi-body model under dynamic impact loading conditions such as reaction forces at lumbar motion segments were employed as force boundary conditions for the finite element model of the selected functional spine unit (FSU). Stress and pressure in the intervertebral disc element and the reaction force at a specific vertebral level were presented. This approach has the potential to more realistically simulate the dynamics of spinal segments and whole spine, and study the effects on spinal elements.


2011 ◽  
Vol 11 (01) ◽  
pp. 163-176
Author(s):  
XIONGQI PENG ◽  
YU WANG ◽  
ZAOYANG GUO ◽  
SHAOQING SHI

This paper validates a constitutive model for human intervertebral disc annulus fibrosus via numerical simulations on a lumber spine motion segment. This anisotropic hyperelastic fiber-reinforced constitutive model was previously developed by the authors. Based on three-dimensional (3D) lumbar spine segments that are constructed from CT scanning images, a detailed and anatomically accurate human lumbar spine finite element (FE) model for L3–L4 motion segment is developed. The FE model includes vertebral bodies, intervertebral disc, and various ligaments. Numerical simulations are carried out by using commercial CAE software package ABAQUS/Standard. The loading cases considered in the numerical analysis are set to be consistent with sets-up of cadaveric specimen testing available in the literature. Numerical results such as load–displacement curves and nucleus pressure are compared with experimental data. Simulation results show good consistency with cadaveric experimental data, and have good biomechanical fidelity. The constitutive model can be used for human intervertebral disc modeling and biomechanical analysis of human spine column.


Author(s):  
Kristen E. Lipscomb ◽  
Nesrin Sarigul-Klijn

Back pain is a debilitating medical condition, often with an unclear source. Over time, back pain can affect the work and lifestyle of an individual by reducing job productivity and time spent on enjoyable activities. Discography of the intervertebral disc (IVD) is often used to diagnose pathology of the disc and determine if it may be a source for chronic back pain. It has recently been suggested that discography may lead to IVD degeneration, and has been a cause of controversy among spine care physicians. Using the results from a cadaveric experimental model, a finite element model was first validated. Then, a study was conducted to better understand the changes caused by discography on human spine mechanics. An anatomically accurate L3-L5 lumbar spine model was developed using computed tomography scans. Discography was simulated in the model as an area in the disc affected by needle puncture. The material properties in the nucleus pulposus were adjusted to match experimental data both before and after puncture. The results show that puncture of the IVD leads to increased deformation as well as increased stresses in the disc. Pressure in the nucleus pulposus found to decrease after puncture, and was calculated in the course of this study. Puncturing the IVD changes disc mechanics and may lead to progressive spine issues in the future such as disc degeneration. While discography has been the gold standard to determine if the disc was a source of back pain in patients for many years, the potential long-term degenerative effects of the procedure are only now coming into light, and must be closely examined.


2015 ◽  
Vol 84 (3) ◽  
pp. 157-166
Author(s):  
Witold Woźniak ◽  
Małgorzata Grzymisławska ◽  
Joanna Łupicka ◽  
Małgorzata Bruska ◽  
Adam Piotrowski ◽  
...  

Introduction. In the vast literature concerning the development of the intervertebral discs controversies exist as to the period of differentiation and structure of the nucleus pulposus and annulus fibrosus. These controversies result from different determination of age of the investigated embryos. Aim. Using embryos from departmental collection age of which was established according to international Carnegie staging and expressed in postfertilizational days, the differentiation of the intervertebral discs was traced. Material and methods. Study was performed on 34 embryos at developmental stages 13–23 (32–56 days). Embryos were serially sectioned in sagittal, frontal and horizontal planes. Sections were stained with various histological methods and impregnated with silver.Results. Division of sclerotomes into loose cranial and dense caudal zones (sclerotomites) was observed in embryos aged 32 days (stage 13). The intervertebral disc developed from the dense zone of sclerotome and was well recognized in embryos aged 33 days (stage 14). At the end of fifth week (embryos at stage 15, 36 days) the annulus fibrosus and the nucleus pulposus were seen. The annulus fibrosus differentiated into lateral and medial zones. Within the lateral zone cells were arranged into circular rows. These rows were considered as the first stage of laminar structure. In further developmental stages the laminae occupied both zones of the annulus fibrosus.Conclusions. The intervertebral discs develop from the dense zone of the sclerotome which is evident in embryos at stage 13 (32 days). Discs differentiate in embryos aged 33 days, when the nucleus pulposus and annulus fibrosus are recognized. In embryos aged 36 days in the annulus fibrosus circular rows forming laminar arrangement are seen.


2000 ◽  
Author(s):  
Subramanya Uppala ◽  
Robert X. Gao ◽  
Scott Cowan ◽  
K. Francis Lee

Abstract The strength and stability of the lumbar spine are determined not only by the bone and muscles, but also by the visco-elastic structures and the interplay between the different components of the spine, such as ligaments, capsules, annulus fibrosis, and articular cartilage. In this paper we present a non-linear three-dimensional Finite Element model of the lumbar spine. Specifically, a three-dimensional FE model of the L4-5 one-motion segment/2 vertebrae was developed. The cortical shell and the cancellous bone of the vertebral body were modeled as 3D isoparametric eight-nodal elements. Finite element models of spinal injuries with fixation devices are also developed. The deformations across the different sections of the spine are observed under the application of axial compression, flexion/extension, and lateral bending. The developed FE models provided input to both the fixture design and experimental studies.


Author(s):  
Costin D. Untaroiu ◽  
Jacob B. Putnam ◽  
Jeremy Schap ◽  
Matt L. Davis ◽  
F. Scott Gayzik

Pedestrians represent one of the most vulnerable road users and comprise nearly 22% of the road crash related fatalities in the world. Therefore, protection of pedestrians in the car-to-pedestrian collisions (CPC) has recently generated increased attention with regulations which involve three subsystem tests for adult pedestrian protection (leg, thigh and head impact tests). The development of a finite element (FE) pedestrian model could be a better alternative that characterizes the whole-body response of vehicle–pedestrian interactions and assesses the pedestrian injuries. The main goal of this study was to develop and to preliminarily validate a FE model corresponding to a 50th male pedestrian in standing posture. The FE model mesh and defined material properties are based on the Global Human Body Modeling (GHBMC) 50th percentile male occupant model. The lower limb-pelvis and lumbar spine regions of the human model were preliminarily validated against the post mortem human surrogate (PMHS) test data recorded in four-point lateral knee bending tests, pelvic impact tests, and lumbar spine bending tests. Then, pedestrian-to-vehicle impact simulations were performed using the whole pedestrian model and the results were compared to corresponding pedestrian PMHS tests. Overall, the preliminary simulation results showed that lower leg response is close to the upper boundaries of PMHS corridors. The pedestrian kinematics predicted by the model was also in the overall range of test data obtained with PMHS with various anthropometries. In addition, the model shows capability to predict the most common injuries observed in pedestrian accidents. Generally, the validated pedestrian model may be used by safety researchers in the design of front ends of new vehicles in order to increase pedestrian protection.


Author(s):  
David T. Korda ◽  
Delphine Perie ◽  
James C. Iatridis

The intervertebral disc provides flexibility and load support for the spine. It consists of two main regions; the outer annulus fibrosus which is a highly organized collagen matrix and the inner nucleus pulposus which (in a healthy disc) is a proteoglycan rich gelatinous material. The predominant mode of loading on the intervertebral disc is axial compression, which generates hydrostatic pressures within the disc. The high water content of the nucleus plays a major role in supporting these loads. With age and degeneration, the water content of the nucleus changes, and is believed to significantly impact its ability to bear load. The purpose of this study therefore, was to define the effects of swelling conditions (which affect disc hydration) on the material properties of the disc under compressive loading.


Sign in / Sign up

Export Citation Format

Share Document