A Biomechanical Model of Lumbar Spine

2000 ◽  
Author(s):  
Subramanya Uppala ◽  
Robert X. Gao ◽  
Scott Cowan ◽  
K. Francis Lee

Abstract The strength and stability of the lumbar spine are determined not only by the bone and muscles, but also by the visco-elastic structures and the interplay between the different components of the spine, such as ligaments, capsules, annulus fibrosis, and articular cartilage. In this paper we present a non-linear three-dimensional Finite Element model of the lumbar spine. Specifically, a three-dimensional FE model of the L4-5 one-motion segment/2 vertebrae was developed. The cortical shell and the cancellous bone of the vertebral body were modeled as 3D isoparametric eight-nodal elements. Finite element models of spinal injuries with fixation devices are also developed. The deformations across the different sections of the spine are observed under the application of axial compression, flexion/extension, and lateral bending. The developed FE models provided input to both the fixture design and experimental studies.

1995 ◽  
Vol 117 (3) ◽  
pp. 272-278 ◽  
Author(s):  
M. Dalstra ◽  
R. Huiskes ◽  
L. van Erning

Due to both its shape and its structural architecture, the mechanics of the pelvic bone are complex. In Finite Element (FE) models, these aspects have often been (over) simplified, sometimes leading to conclusions which did not bear out in reality. The purpose of this study was to develop a more realistic FE model of the pelvic bone. This not only implies that the model has to be three-dimensional, but also that the thickness of the cortical shell and the density distribution of the trabecular bone throughout the pelvic bone have to be incorporated in the model in a realistic way. For this purpose, quantitative measurements were performed on computer tomography scans of several pelvic bones, after which the measured quantities were allocated to each element of the mesh individually. To validate this FE model, two fresh pelvic bones were fitted with strain gages and loaded in a testing machine. Stresses calculated from the strain data of this experiment were compared to the results of a simulation with the developed pelvic FE model.


2019 ◽  
Vol 43 (4) ◽  
pp. 443-453
Author(s):  
Stephen M. Handrigan ◽  
Sam Nakhla

An investigation to determine the effect of porosity concentration and location on elastic modulus is performed. Due to advancements in testing methods, the manufacturing and testing of microbeams to obtain mechanical response is possible through the use of focused ion beam technology. Meanwhile, rigorous analysis is required to enable accurate extraction of the elastic modulus from test data. First, a one-dimensional investigation with beam theory, Euler–Bernoulli and Timoshenko, was performed to estimate the modulus based on load-deflection curve. Second, a three-dimensional finite element (FE) model in Abaqus was developed to identify the effect of porosity concentration. Furthermore, the current work provided an accurate procedure to enable accurate extraction of the elastic modulus from load-deflection data. The use of macromodels such as beam theory and three-dimensional FE model enabled enhanced understanding of the effect of porosity on modulus.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Namkeun Kim ◽  
You Chang ◽  
Stefan Stenfelt

A three-dimensional finite-element (FE) model of a human dry skull was devised for simulation of human bone-conduction (BC) hearing. Although a dry skull is a simplification of the real complex human skull, such model is valuable for understanding basic BC hearing processes. For validation of the model, the mechanical point impedance of the skull as well as the acceleration of the ipsilateral and contralateral cochlear bone was computed and compared to experimental results. Simulation results showed reasonable consistency between the mechanical point impedance and the experimental measurements when Young’s modulus for skull and polyurethane was set to be 7.3 GPa and 1 MPa with 0.01 and 0.1 loss factors at 1 kHz, respectively. Moreover, the acceleration in the medial-lateral direction showed the best correspondence with the published experimental data, whereas the acceleration in the inferior-superior direction showed the largest discrepancy. However, the results were reasonable considering that different geometries were used for the 3D FE skull and the skull used in the published experimental study. The dry skull model is a first step for understanding BC hearing mechanism in a human head and simulation results can be used to predict vibration pattern of the bone surrounding the middle and inner ear during BC stimulation.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Da-Ping Qin ◽  
Xiao-Gang Zhang ◽  
Ming Son ◽  
Hua Zhang ◽  
Lin-Zhong Cao ◽  
...  

AbstractIn this study, we compared stress changes and quantity effect relationships from 3D finite element models of normal and degenerative lumbar segments. We further defined the mechanisms causing alterations in mechanical stability the control of normal and degenerative lumbar segments using traditional Chinese medicine. The characteristics of the stress change and the quantity effect relationships of the three-dimensional finite element model of normal and degenerative lumbar segments were compared. The mechanism(s) leading to changes in mechanical stability and the intervention and balance between normal and degenerative lumbar segments of the traditional Chinese medicine was analyzed. The change trend of stress and strain was compared with the three dimensional finite element model under different motion states of normal lumbar vertebrae. A 3D-FEM of degenerative lumbar segments L4 ~ 5 of the human spine was established to simulate the physiological and pathological changes of the lumbar spine in response to flexion, extension, lateral bending and torsion. The stress changes in the normal and degenerative lumbar vertebrae were assessed through external force interventions and the response to TCM. Stress in the degenerative lumbar vertebrae changed according the external load. Stress and strain were compared in the FEM model under a range of motion states. Components of the human lumbar vertebrae including the cortical vertebrae, cancellous bone, endplates, fibrous rings, and facet articular processes were investigated. The elastic modulus of the nerve roots and the posterior marginal structures of the vertebral body increased with lumbar degeneration. Under stress trends in normal lumbar and different degrees of degenerative lumbar structures including cortical bone, loose bone, terminal plate, fiber ring, nucleus, small articular processes, nerve roots and posterior structures. In normal lumbar spine, 20%, 50%, 70% lumbar degeneration, 106 different lumbar anterior flexion 30 and posterior extension with different external forces showed that ANOVA F was between 3.623 and 11.381 and P changed between 0.001 and 0.05.It is clear that in the lumbar movement segments under different pressure intervention, the changes in the degree of degeneration are significantly different from each constituent structure, among which the trend of expected change between the constituent structures of the lumbar anterior flexion 30 is particularly obvious. The stress distribution in the intervertebral discs were influenced by TCM, and the space in the spinal canal enlarged so that nerve root stress decreased, vertebral body stress increased, and facet processes and pedicle stress in the posterior regions exceeded those of the anterior flexion position. The internal stress of the intervertebral disc increased in the flexion compared to the extension position, gradually increasing from top to bottom. The stress concentration point of the degenerative lumbar disc is significantly greater than the stress in the normal lumbar disc stress distribution area, and increases with the degree of degeneration. Compared with the load capacity of normal lumbar and mild (15% reduction), moderate (40% reduction) lumbar disc protrusion model in bending, extension, axial rotation, lateral bending, the results found that the load transmission of lumbar disc degeneration model to different degrees has also changed, so its compression stiffness, strain distribution and size are also different. TCM can improve and treat lumbar disc disease through its ability to regulate the mechanical environment of degenerative lumbar vertebrae. Compared to the FEM models of the lumbar vertebrae, lumbar degenerative changes could be assessed in response to alterations in the biomechanical environment. These findings provide a scientific basis for the popularization and application of TCM to prevent and treat spinal degenerative disease.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Siti Nurfaezah Zahari ◽  
Mohd Juzaila Abd Latif ◽  
Nor Raihanah Abdull Rahim ◽  
Mohammed Rafiq Abdul Kadir ◽  
Tunku Kamarul

The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed subjected to follower load of 500 N, 800 N, and 1200 N which represent the loads for individuals who are normal and overweight with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26 MPa at L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to 30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also occurred at the L1-L2 segment with 3.9 MPa in extension motion. However, the highest increment was also found at L4-L5 where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the lumbar spine which may lead to early intervertebral disc damage.


Author(s):  
N. Bahramshahi ◽  
H. Ghaemi ◽  
K. Behdinan

The objective of this investigation is to develop a detailed, non-linear asymmetric three-dimensional anatomically and mechanically accurate FE model of complete middle cervical spine (C3-C5) using Hypermesh and MSC.Marc software. To achieve this goal, the components of the cervical spine are modeled using 20-noded hexagonal elements. The model includes the intervertebral disc, cortical bone, cancellous bone, endplates, and ligaments. The structure and dimensions of each spinal component are compared with experimentally measured values. In addition, the soil mechanics formulation of MSC.Marc finite element software is applied to model the mechanical behaviour of vertebrae and intervertebral discs as linear isotropic two-phase (biphasic) material. The FE simulation is conducted to investigate compression, flexion\extension and right\Left lateral bending modes. The simulation results are validated and compared closely with the published experimental data and the existing FE models. In general, results show greater flexibility in flexion and less flexibility in extension. The flexion/extension curves are asymmetric with a greater magnitude in flexion than in extension. In addition, the variations of the predicted lateral C4-C5 disc bulge are investigated and the results show that the maximum disc bulge occurs at the C4-C5 anterior location.


Author(s):  
Martin Brummund ◽  
Vladimir Brailovski ◽  
Yvan Petit ◽  
Yann Facchinello ◽  
Jean-Marc Mac-Thiong

A three-dimensional finite element model of the porcine lumbar spine (L1–L6) was used to assess the effect of spinal rod stiffness on lumbar biomechanics. The model was validated through a comparison with in vitro measurements performed on six porcine spine specimens. The validation metrics employed included intervertebral rotations and the nucleus pressure in the first instrumented intervertebral disc. The numerical results obtained suggest that rod stiffness values as low as 0.1 GPa are required to reduce the mobility gradient between the adjacent and instrumented segments and the nucleus pressures across the porcine lumbar spine significantly. Stiffness variations above this threshold value have no significant effect on spine biomechanics. For such low-stiffness rods, intervertebral rotations in the instrumented zone must be monitored closely in order to guarantee solid fusion. Looking ahead, the proposed model will serve to examine the transverse process hooks and variable stiffness rods in order to further smooth the transition between the adjacent and instrumented segments, while preserving the stability of the instrumented zone, which is needed for fusion.


2011 ◽  
Vol 409 ◽  
pp. 751-756 ◽  
Author(s):  
J. de Jaeger ◽  
Denis Solas ◽  
Thierry Baudin ◽  
Olivier Fandeur ◽  
J.H. Schmitt ◽  
...  

An experimental study of compression tests at high temperature and different engineering strains was carried out on INCONEL 718 above the delta phase solvus. The objective is to investigate the mechanical behaviour in relation with the microstructure evolution. After deformation the samples were quenched with helium gas to avoid metadynamic recrystallization (MDRX). The quench efficiency is discussed by microstructural and hardness comparison. During forging process and without MDRX, there is generally a competition between deformation and dynamic recrystallization state (DRX) i.e. a dependence on dislocation density increase and dislocation annihilation, respectively. To investigate this competition, samples are characterized at different scales by EBSD method to determine local texture and grain size and by TEM to understand the dislocation evolution and determine the nucleation mechanism. In parallel, a numerical model using a three-dimensional finite element model of crystalline plasticity (CristalECP) has been developed in ABAQUS™ finite element code and coupled with a Recrystallization Cellular Automaton (CA_ReX). Results of forging process simulations are compared to those of experimental studies presented before and then discussed in terms of evolution.


Sign in / Sign up

Export Citation Format

Share Document