scholarly journals DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Vijay Kumar Chityala ◽  
K. Sathish Kumar ◽  
Ramesh Macha ◽  
Parthasarathy Tigulla ◽  
Shivaraj

Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO4] and [Cu. L. A] where “L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2and UV light.

2009 ◽  
Vol 2 (1) ◽  
pp. 114-126 ◽  
Author(s):  
Y. Prashanthi ◽  
Shiva Raj

The Schiff bases namely MIMFMA, MIMTMA and MIPMA have been prepared by reacting 3-amino-5-methyl isoxazole with 5-methyl furan-2-carboxyaldehyde, 5-methyl thiphene-2-carboxaldehyde and pyridine-2-carboxaldehyde. The Cu(II), Ni(II), Co(II), Zn(II) and VO(IV) have been prepared by reacting metal chlorides with those  Schiff bases in an alchololic medium. The complexes are electrolytes in DMSO. These have been  characterized by using elemental analysis, IR, UV-VIS, 1H, 13C, mass spectra, magnetic susceptibility, conductance measurements and thermo gravimetric studies. The complexes were found to have composition ML2. On basis of elemental and spectral studies, six coordinated geometry is assigned for these complexes. The Schiff bases act as neutral and bidentate and coordinate through the azomethine nitrogen and furfural oxygen, thiophene sulphur and pyridine nitrogen, respectively. The synthesized ligands and their metal complexes were screened against bacteria and fungi.  The activity data show that the metal complexes are more potent than the parent Schiff bases. Keywords; Schiff bases; Transition metal complexes; Spectral studies; Antimicrobial studies. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i1.2732                  J. Sci. Res. 2 (1), 114-126 (2010)   


2017 ◽  
Vol 13 (9) ◽  
pp. 6513-6519
Author(s):  
Anil Kumar M R ◽  
Shanmukhappa S ◽  
Rangaswamy B E ◽  
Revanasiddappa M

Transition metal complexes of Cu(II), Co(II), Ni(II), Zn(II), Cd(II) and Mn(II) have been synthesized with the Schiff base ligand 5-Sub-N-(2-mercaptophenyl)salicylideneimine. Elemental analysis of these complexes suggest that these metal ions forms complexes of type ML(H2O)stoichiometry for Cu(II), Co(II), Ni(II), Zn(II), Cd(II) and Mn(II). The ligand behaves as tridentate and forms coordinate bonds through O, S and N atoms. Magnetic susceptibility, IR, UV – Visible, Mass and ESR spectral studies suggest that Cu(II), Ni(II) complexes posses square planar geometry, whereas Co(II), Zn(II), Cd(II) and Mn(II) complexes posses tetrahedral geometry. The complexes were tested for their antimicrobial activity against the bacterial strains Staphylococcus aureus and Bacillus subtilis.The Schiff base metal complexes evaluated for their antifungal activity against the fungi A. niger and C. oxysporum. The DNA cleavage studies of Schiff base complexes werestudied using Calf – Thymus DNA by agarose gel electrophoresis method.


2010 ◽  
Vol 20 (4) ◽  
pp. 493-502 ◽  
Author(s):  
Mohammedshafi A. Phaniband ◽  
Shreedhar D. Dhumwad ◽  
Shashikanth R. Pattan

2011 ◽  
Vol 64 (15) ◽  
pp. 2688-2697 ◽  
Author(s):  
Sangamesh A. Patil ◽  
Vinod H. Naik ◽  
Ajaykumar D. Kulkarni ◽  
Shrishila N. Unki ◽  
Prema S. Badami

2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Sulekh Chandra ◽  
Smriti Raizada ◽  
Monika Tyagi ◽  
Archana Gautam

A series of metal complexes of Cu(II) and Ni(II) having the general composition[M(L)X2]with benzil bis(thiosemicarbazone) has been prepared and characterized by element chemical analysis, molar conductance, magnetic susceptibility measurements, and spectral (electronic, IR, EPR, mass) studies. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes but a tetragonal geometry for Cu(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Nagesh Gunvanthrao Yernale ◽  
Mruthyunjayaswamy Bennikallu Hire Mathada

A novel Schiff base ligandN-(4-phenylthiazol-2yl)-2-((2-thiaxo-1,2-dihydroquinolin-3-yl)methylene)hydrazinecarboxamide(L)obtained by the condensation ofN-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), and Zn(II) complexes have been characterized by elemental analysis and various spectral studies like FT-IR,1H NMR, ESI mass, UV-Visible, ESR, TGA/DTA, and powder X-ray diffraction studies. The Schiff base ligand(L)behaves as tridentate ONS donor and forms the complexes of type [ML(Cl)2] with square pyramidal geometry. The Schiff base ligand(L)and its metal complexes have been screenedin vitrofor their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activity of ligand and its metal complexes were studied using plasmid DNA pBR322 as a target molecule by gel electrophoresis method. The brine shrimp bioassay was also carried out to study thein vitrocytotoxicity properties for the ligand and its metal complexes againstArtemia salina. The results showed that the biological activities of the ligand were found to be increased on complexation.


Sign in / Sign up

Export Citation Format

Share Document