scholarly journals The Study of the Frequency Effect of Dynamic Compressive Loading on Primary Articular Chondrocyte Functions Using a Microcell Culture System

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Wan-Ying Lin ◽  
Yu-Han Chang ◽  
Hsin-Yao Wang ◽  
Tzu-Chi Yang ◽  
Tzu-Keng Chiu ◽  
...  

Compressive stimulation can modulate articular chondrocyte functions. Nevertheless, the relevant studies are not comprehensive. This is primarily due to the lack of cell culture apparatuses capable of conducting the experiments in a high throughput, precise, and cost-effective manner. To address the issue, we demonstrated the use of a perfusion microcell culture system to investigate the stimulating frequency (0.5, 1.0, and 2.0 Hz) effect of compressive loading (20% and 40% strain) on the functions of articular chondrocytes. The system mainly integrates the functions of continuous culture medium perfusion and the generation of pneumatically-driven compressive stimulation in a high-throughput micro cell culture system. Results showed that the compressive stimulations explored did not have a significant impact on chondrocyte viability and proliferation. However, the metabolic activity of chondrocytes was significantly affected by the stimulating frequency at the higher compressive strain of 40% (2 Hz, 40% strain). Under the two compressive strains studied, the glycosaminoglycans (GAGs) synthesis was upregulated when the stimulating frequency was set at 1 Hz and 2 Hz. However, the stimulating frequencies explored had no influence on the collagen production. The results of this study provide useful fundamental insights that will be helpful for cartilage tissue engineering and cartilage rehabilitation.

Life ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 58
Author(s):  
Aida Martinez-Sanchez ◽  
Stefano Lazzarano ◽  
Eshita Sharma ◽  
Helen Lockstone ◽  
Christopher L. Murphy

MicroRNAs (miRNAs) play key roles in cartilage development and homeostasis and are dysregulated in osteoarthritis. MiR-145 modulation induces profound changes in the human articular chondrocyte (HAC) phenotype, partially through direct repression of SOX9. Since miRNAs can simultaneously silence multiple targets, we aimed to identify the whole targetome of miR-145 in HACs, critical if miR-145 is to be considered a target for cartilage repair. We performed RIP-seq (RNA-immunoprecipitation and high-throughput sequencing) of miRISC (miRNA-induced silencing complex) in HACs overexpressing miR-145 to identify miR-145 direct targets and used cWords to assess enrichment of miR-145 seed matches in the identified targets. Further validations were performed by RT-qPCR, Western immunoblot, and luciferase assays. MiR-145 affects the expression of over 350 genes and directly targets more than 50 mRNAs through the 3′UTR or, more commonly, the coding region. MiR-145 targets DUSP6, involved in cartilage organization and development, at the translational level. DUSP6 depletion leads to MMP13 upregulation, suggesting a contribution towards the effect of miR-145 on MMP13 expression. In conclusion, miR-145 directly targets several genes involved in the expression of the extracellular matrix and inflammation in primary chondrocytes. Thus, we propose miR-145 as an important regulator of chondrocyte function and a new target for cartilage repair.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 4552-4560
Author(s):  
Taegeun Lim ◽  
Eun-Geun Kim ◽  
Jungil Choi ◽  
Sunghoon Kwon

A capillary and centrifuge-based rapid antimicrobial susceptibility testing system is developed to reduce the time of loading the sample and culture media while achieving a high-throughput testing capacity.


2009 ◽  
Vol 26 (3) ◽  
pp. 872-880 ◽  
Author(s):  
Haiying Zhou ◽  
Jennifer Purdie ◽  
Tongtong Wang ◽  
Anli Ouyang

Lab on a Chip ◽  
2018 ◽  
Vol 18 (17) ◽  
pp. 2604-2613 ◽  
Author(s):  
Yeong Jun Yu ◽  
Young Hye Kim ◽  
Kyuhwan Na ◽  
Seo Yun Min ◽  
Ok Kyung Hwang ◽  
...  

A microchannel-free, 3D cell culture system has a hydrogel-incorporating unit integrated with a multi-well plate. This plate provides better reproducibility in a variety of quantitative biochemical assays and high content-screening (HCS).


2017 ◽  
Vol 357 (2) ◽  
pp. 310-319
Author(s):  
Grace Bundens ◽  
Andrea Buckley ◽  
LaBraya Milton ◽  
Kathryn Behling ◽  
Sarah Chmielewski ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Jisu Hong ◽  
Yoonkyung Shin ◽  
Jiseok Lee ◽  
Chaenyung Cha

Hydrogels are widely used as a 3D cell culture platform, as they can be tailored to provide suitable microenvironments to induce cellular phenotypes with physiological significance. Hydrogels are especially deemed...


Sign in / Sign up

Export Citation Format

Share Document