scholarly journals A Rare Case of Hypertrophic Cardiomyopathy with Subendocardial Late Gadolinium Enhancement in an Apical Aneurysm with Thrombus

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Yusuke Morita ◽  
Takao Kato ◽  
Mitsumasa Okano ◽  
Kanae Su ◽  
Masahiro Kimura ◽  
...  

The mechanisms responsible for the development of apical aneurysms in cases of hypertrophic cardiomyopathy (HCM) are currently unclear but likely involve multiple factors. Here, we present a case of HCM with marked subendocardial fibrosis involving the apical and proximal portions of the left ventricle. A 71-year-old man with left ventricular hypertrophy presented with signs and symptoms of heart failure. The presence of asymmetrical left ventricular hypertrophy and bilateral, thickened ventricular walls with an apical aneurysm on transthoracic echocardiography suggested a diagnosis of HCM with ventricular dysfunction. No intraventricular pressure gradients with obstruction were identified. Late gadolinium enhancement (LGE) with cardiac magnetic resonance imaging and endomyocardial biopsies showed subendocardial fibrosis involving the apical aneurysm and proximal portion. Whereas LGE in a transmural pattern is commonly observed in HCM apical aneurysms, subendocardial LGE, as noted in the present case, is a relatively rare occurrence. Thus, the present case may provide unique insights into the adverse remodeling process and formation of apical aneurysms in cases of HCM.

2020 ◽  
Vol 17 (5) ◽  
pp. 192-204
Author(s):  
Matthew K. Burrage ◽  
Vanessa M. Ferreira

Abstract Purpose of Review Left ventricular hypertrophy (LVH) is a common presentation encountered in clinical practice with a diverse range of potential aetiologies. Differentiation of pathological from physiological hypertrophy can be challenging but is crucial for further management and prognostication. Cardiovascular magnetic resonance (CMR) with advanced myocardial tissue characterisation is a powerful tool that may help to differentiate these aetiologies in the assessment of LVH. Recent Findings The use of CMR for detailed morphological assessment of LVH is well described. More recently, advanced CMR techniques (late gadolinium enhancement, parametric mapping, diffusion tensor imaging, and myocardial strain) have been used. These techniques are highly promising in helping to differentiate key aetiologies of LVH and provide valuable prognostic information. Summary Recent advancements in CMR tissue characterisation, such as parametric mapping, in combination with detailed morphological assessment and late gadolinium enhancement, provide a powerful resource that may help assess and differentiate important causes of LVH.


Author(s):  
Rebecca K. Hughes ◽  
Claudia Camaioni ◽  
João B. Augusto ◽  
Kristopher Knott ◽  
Ellie Quinn ◽  
...  

Background Impaired myocardial blood flow (MBF) in the absence of epicardial coronary disease is a feature of hypertrophic cardiomyopathy (HCM). Although most evident in hypertrophied or scarred segments, reduced MBF can occur in apparently normal segments. We hypothesized that impaired MBF and myocardial perfusion reserve, quantified using perfusion mapping cardiac magnetic resonance, might occur in the absence of overt left ventricular hypertrophy (LVH) and late gadolinium enhancement, in mutation carriers without LVH criteria for HCM (genotype‐positive, left ventricular hypertrophy‐negative). Methods and Results A single center, case‐control study investigated MBF and myocardial perfusion reserve (the ratio of MBF at stress:rest), along with other pre‐phenotypic features of HCM. Individuals with genotype‐positive, left ventricular hypertrophy‐negative (n=50) with likely pathogenic/pathogenic variants and no evidence of LVH, and matched controls (n=28) underwent cardiac magnetic resonance. Cardiac magnetic resonance identified LVH‐fulfilling criteria for HCM in 5 patients who were excluded. Individuals with genotype‐positive, left ventricular hypertrophy‐negative had longer indexed anterior mitral valve leaflet length (12.52±2.1 versus 11.55±1.6 mm/m 2 , P =0.03), lower left ventricular end‐systolic volume (21.0±6.9 versus 26.7±6.2 mm/m 2 , P ≤0.005) and higher left ventricular ejection fraction (71.9±5.5 versus 65.8±4.4%, P≤ 0.005). Maximum wall thickness was not significantly different (9.03±1.95 versus 8.37±1.2 mm, P =0.075), and no subject had significant late gadolinium enhancement (minor right ventricle‒insertion point late gadolinium enhancement only). Perfusion mapping demonstrated visual perfusion defects in 9 (20%) carriers versus 0 controls ( P =0.011). These were almost all septal or near right ventricle insertion points. Globally, myocardial perfusion reserve was lower in carriers (2.77±0.83 versus 3.24±0.63, P =0.009), with a subendocardial:subepicardial myocardial perfusion reserve gradient (2.55±0.75 versus 3.2±0.65, P =<0.005; 3.01±0.96 versus 3.47±0.75, P =0.026) but equivalent MBF (2.75±0.82 versus 2.65±0.69 mL/g per min, P =0.826). Conclusions Regional and global impaired myocardial perfusion can occur in HCM mutation carriers, in the absence of significant hypertrophy or scarring.


Sign in / Sign up

Export Citation Format

Share Document