scholarly journals Relative Orbit Stabilization Control for the Agile Satellite under Stochastic Disturbance

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xiande Wu ◽  
Fengzhi Guo ◽  
Wenbo Yang ◽  
Jiangtao Xu ◽  
Ting Song

This paper investigates the relative orbit control problem for a space communication satellite network. An observer-based state feedback control scheme is developed under the circumstance of faults and disturbance occurring in the sensors and actuators. The validity of sliding mode observer for the satellites’ network is deduced and the analysis and proof of the relative orbit stabilization control are completed.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaojun Wang ◽  
Jiankun Sun ◽  
Guipu Li

This paper investigates the finite-time position tracking control problem of pneumatic servo systems subject to hard nonlinearities and various disturbances. A finite-time disturbance observer is firstly designed, which guarantees that the disturbances can be accurately estimated in a finite time. Then, by combining disturbances compensation and state feedback controller together, a nonsmooth composite controller is developed based on sliding mode control approach and homogeneous theory. It is proved that the tracking errors under the proposed composite control approach can be stabilized to zero in finite time. Moreover, compared with pure state feedback control, the proposed composite control scheme offers a faster convergence rate and a better disturbance rejection property. Finally, numerical simulations illustrate the effectiveness of the proposed control scheme.


2013 ◽  
Vol 455 ◽  
pp. 395-401 ◽  
Author(s):  
Xi Chen ◽  
Fu Yang Chen ◽  
Bin Jiang

In this paper, the stabilization problem for the 3 Degree of Freedom (3-DOF) hovering system of Quadrotor with actuator faults is investigated. To handle the helicopter system, an H robust fault-tolerant state feedback control is proposed. In addition, an adaptive method is combined with fault-tolerant H control to improve the flight performance. A more practical actuator fault is built, and the model of the system is presented. The design operates in Linear Matrix Inequality (LMI) technique. Finally, the design was verified on both MATLAB and 3-DOF platform to exam the feasibility and stability of the method.


Author(s):  
Ghania Debbache ◽  
Abdelhak Bennia ◽  
Noureddine Goléa

This paper proposes an adaptive control suitable for motion control of robot manipulators with structured and unstructured uncertainties. In order to design an adaptive robust controller, with the ability to compensate these uncertainties, we use neural networks (NN) that have the capability to approximate any nonlinear function over a compact space. In the proposed control scheme, we need not derive the linear formulation of robot dynamic equation and tune the parameters. To reduce the NNs complexity, we consider the properties of robot dynamics and the decomposition of the uncertainties terms. The proposed controller is robust against uncertainties and external disturbance. The validity of the control scheme is demonstrated by computer simulations on a two-link robot manipulator.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Zhumu Fu ◽  
Leipo Liu ◽  
Xiaohong Wang

This paper is concerned with the stabilization problem of uncertain chaotic systems with stochastic disturbances. A novel sliding function is designed, and then a sliding mode controller is established such that the trajectory of the system converges to the sliding surface in a finite time. Using a virtual state feedback control technique, sufficient condition for the mean square asymptotic stability and passivity of sliding mode dynamics is derived via linear matrix inequality (LMI). Finally, a simulation example is presented to show the validity and advantage of the proposed method.


2015 ◽  
Vol 789-790 ◽  
pp. 658-664 ◽  
Author(s):  
Muhammad Faisal ◽  
Mohsin Jamil ◽  
Usman Rashid ◽  
Syed Omer Gilani ◽  
Yasar Ayaz ◽  
...  

In this paper, we propose a novel dual-loop control scheme (DLCS). We did not see such investigation of DLCS in the previous research work. DLCS scheme is a combination of classical PID and advanced state feedback control techniques. The proposed technique is used to control swing angle and trolley position of a 3DOF crane. Extensive simulations have been carried out using MATLAB / Simulink and practically validated on a Quanser 3DOF crane system. Experimental results indicate that the proposed DLCS control scheme improves crane operation by damping the payload oscillations. The scheme also smoothen the trolley motion. Our suggested technique provides better performance in terms of payload oscillations comparing to the classical PID.


Sign in / Sign up

Export Citation Format

Share Document