scholarly journals Several New Third-Order and Fourth-Order Iterative Methods for Solving Nonlinear Equations

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Anuradha Singh ◽  
J. P. Jaiswal

In order to find the zeros of nonlinear equations, in this paper, we propose a family of third-order and optimal fourth-order iterative methods. We have also obtained some particular cases of these methods. These methods are constructed through weight function concept. The multivariate case of these methods has also been discussed. The numerical results show that the proposed methods are more efficient than some existing third- and fourth-order methods.

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
F. Soleymani

This paper contributes a very general class of two-point iterative methods without memory for solving nonlinear equations. The class of methods is developed using weight function approach. Per iteration, each method of the class includes two evaluations of the function and one of its first-order derivative. The analytical study of the main theorem is presented in detail to show the fourth order of convergence. Furthermore, it is discussed that many of the existing fourth-order methods without memory are members from this developed class. Finally, numerical examples are taken into account to manifest the accuracy of the derived methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
J. P. Jaiswal

The object of the present work is to give the new class of third- and fourth-order iterative methods for solving nonlinear equations. Our proposed third-order method includes methods of Weerakoon and Fernando (2000), Homeier (2005), and Chun and Kim (2010) as particular cases. The multivariate extension of some of these methods has been also deliberated. Finally, some numerical examples are given to illustrate the performances of our proposed methods by comparing them with some well existing third- and fourth-order methods. The efficiency of our proposed fourth-order method over some fourth-order methods is also confirmed by basins of attraction.


2019 ◽  
Vol 17 (1) ◽  
pp. 1567-1598
Author(s):  
Tianbao Liu ◽  
Xiwen Qin ◽  
Qiuyue Li

Abstract In this paper, we derive and analyze a new one-parameter family of modified Cauchy method free from second derivative for obtaining simple roots of nonlinear equations by using Padé approximant. The convergence analysis of the family is also considered, and the methods have convergence order three. Based on the family of third-order method, in order to increase the order of the convergence, a new optimal fourth-order family of modified Cauchy methods is obtained by using weight function. We also perform some numerical tests and the comparison with existing optimal fourth-order methods to show the high computational efficiency of the proposed scheme, which confirm our theoretical results. The basins of attraction of this optimal fourth-order family and existing fourth-order methods are presented and compared to illustrate some elements of the proposed family have equal or better stable behavior in many aspects. Furthermore, from the fractal graphics, with the increase of the value m of the series in iterative methods, the chaotic behaviors of the methods become more and more complex, which also reflected in some existing fourth-order methods.


2007 ◽  
Vol 48 (3) ◽  
pp. 343-359 ◽  
Author(s):  
Sergio Amat ◽  
Sonia Busquier ◽  
Sergio Plaza

AbstractWe study the dynamics of a family of third-order iterative methods that are used to find roots of nonlinear equations applied to complex polynomials of degrees three and four. This family includes, as particular cases, the Chebyshev, the Halley and the super-Halleyroot-finding algorithms, as well as the so-called c-methods. The conjugacy classes of theseiterative methods are found explicitly.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gustavo Fernández-Torres ◽  
Juan Vásquez-Aquino

We present new modifications to Newton's method for solving nonlinear equations. The analysis of convergence shows that these methods have fourth-order convergence. Each of the three methods uses three functional evaluations. Thus, according to Kung-Traub's conjecture, these are optimal methods. With the previous ideas, we extend the analysis to functions with multiple roots. Several numerical examples are given to illustrate that the presented methods have better performance compared with Newton's classical method and other methods of fourth-order convergence recently published.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor ◽  
Eisa Al-Said ◽  
Muhammad Waseem

We suggest and analyze some new iterative methods for solving the nonlinear equationsf(x)=0using the decomposition technique coupled with the system of equations. We prove that new methods have convergence of fourth order. Several numerical examples are given to illustrate the efficiency and performance of the new methods. Comparison with other similar methods is given.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We develop a family of fourth-order iterative methods using the weighted harmonic mean of two derivative functions to compute approximate multiple roots of nonlinear equations. They are proved to be optimally convergent in the sense of Kung-Traub’s optimal order. Numerical experiments for various test equations confirm well the validity of convergence and asymptotic error constants for the developed methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We construct a biparametric family of fourth-order iterative methods to compute multiple roots of nonlinear equations. This method is verified to be optimally convergent. Various nonlinear equations confirm our proposed method with order of convergence of four and show that the computed asymptotic error constant agrees with the theoretical one.


Sign in / Sign up

Export Citation Format

Share Document