scholarly journals An optimal fourth-order family of modified Cauchy methods for finding solutions of nonlinear equations and their dynamical behavior

2019 ◽  
Vol 17 (1) ◽  
pp. 1567-1598
Author(s):  
Tianbao Liu ◽  
Xiwen Qin ◽  
Qiuyue Li

Abstract In this paper, we derive and analyze a new one-parameter family of modified Cauchy method free from second derivative for obtaining simple roots of nonlinear equations by using Padé approximant. The convergence analysis of the family is also considered, and the methods have convergence order three. Based on the family of third-order method, in order to increase the order of the convergence, a new optimal fourth-order family of modified Cauchy methods is obtained by using weight function. We also perform some numerical tests and the comparison with existing optimal fourth-order methods to show the high computational efficiency of the proposed scheme, which confirm our theoretical results. The basins of attraction of this optimal fourth-order family and existing fourth-order methods are presented and compared to illustrate some elements of the proposed family have equal or better stable behavior in many aspects. Furthermore, from the fractal graphics, with the increase of the value m of the series in iterative methods, the chaotic behaviors of the methods become more and more complex, which also reflected in some existing fourth-order methods.

2019 ◽  
Vol 13 (2) ◽  
pp. 399-422
Author(s):  
Miodrag Petkovic ◽  
Ljiljana Petkovic ◽  
Beny Neta

Generalized Halley-like one-parameter families of order three and four for finding multiple root of a nonlinear equation are constructed and studied. This presentation is, actually, a mixture of theoretical results, algorithmic aspects, numerical experiments, and computer graphics. Starting from the proposed class of third order methods and using an accelerating procedure, we construct a new fourth order family of Halley's type. To analyze convergence behavior of two presented families, we have used two methodologies: (i) testing by numerical examples and (ii) dynamic study using basins of attraction.


Algorithms ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 101
Author(s):  
Alicia Cordero ◽  
Marlon Moscoso-Martínez ◽  
Juan R. Torregrosa

In this paper, we present a new parametric family of three-step iterative for solving nonlinear equations. First, we design a fourth-order triparametric family that, by holding only one of its parameters, we get to accelerate its convergence and finally obtain a sixth-order uniparametric family. With this last family, we study its convergence, its complex dynamics (stability), and its numerical behavior. The parameter spaces and dynamical planes are presented showing the complexity of the family. From the parameter spaces, we have been able to determine different members of the family that have bad convergence properties, as attracting periodic orbits and attracting strange fixed points appear in their dynamical planes. Moreover, this same study has allowed us to detect family members with especially stable behavior and suitable for solving practical problems. Several numerical tests are performed to illustrate the efficiency and stability of the presented family.


2021 ◽  
Vol 5 (3) ◽  
pp. 125
Author(s):  
Alicia Cordero ◽  
Cristina Jordán ◽  
Esther Sanabria-Codesal ◽  
Juan R. Torregrosa

A new parametric family of iterative schemes for solving nonlinear systems is presented. Fourth-order convergence is demonstrated and its stability is analyzed as a function of the parameter values. This study allows us to detect the most stable elements of the class, to find the fractals in the boundary of the basins of attraction and to reject those with chaotic behavior. Some numerical tests show the performance of the new methods, confirm the theoretical results and allow to compare the proposed schemes with other known ones.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
J. P. Jaiswal

The object of the present work is to give the new class of third- and fourth-order iterative methods for solving nonlinear equations. Our proposed third-order method includes methods of Weerakoon and Fernando (2000), Homeier (2005), and Chun and Kim (2010) as particular cases. The multivariate extension of some of these methods has been also deliberated. Finally, some numerical examples are given to illustrate the performances of our proposed methods by comparing them with some well existing third- and fourth-order methods. The efficiency of our proposed fourth-order method over some fourth-order methods is also confirmed by basins of attraction.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Moin-ud-Din Junjua ◽  
Saima Akram ◽  
Nusrat Yasmin ◽  
Fiza Zafar

Solving systems of nonlinear equations plays a major role in engineering problems. We present a new family of optimal fourth-order Jarratt-type methods for solving nonlinear equations and extend these methods to solve system of nonlinear equations. Convergence analysis is given for both cases to show that the order of the new methods is four. Cost of computations, numerical tests, and basins of attraction are presented which illustrate the new methods as better alternates to previous methods. We also give an application of the proposed methods to well-known Burger's equation.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Janak Raj Sharma ◽  
Puneet Gupta

Based on Traub-Steffensen method, we present a derivative free three-step family of sixth-order methods for solving systems of nonlinear equations. The local convergence order of the family is determined using first-order divided difference operator for functions of several variables and direct computation by Taylor's expansion. Computational efficiency is discussed, and a comparison between the efficiencies of the proposed techniques with the existing ones is made. Numerical tests are performed to compare the methods of the proposed family with the existing methods and to confirm the theoretical results. It is shown that the new family is especially efficient in solving large systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rajni Sharma ◽  
Ashu Bahl

A general scheme of third order convergence is described for finding multiple roots of nonlinear equations. The proposed scheme requires one evaluation of f, f′, and f′′ each per iteration and contains several known one-point third order methods for finding multiple roots, as particular cases. Numerical examples are included to confirm the theoretical results and demonstrate convergence behavior of the proposed methods. In the end, we provide the basins of attraction for some methods to observe their dynamics in the complex plane.


2021 ◽  
Vol 5 (1) ◽  
pp. 25
Author(s):  
Víctor Galilea ◽  
José M. Gutiérrez

The purpose of this work is to give a first approach to the dynamical behavior of Schröder’s method, a well-known iterative process for solving nonlinear equations. In this context, we consider equations defined in the complex plane. By using topological conjugations, we characterize the basins of attraction of Schröder’s method applied to polynomials with two roots and different multiplicities. Actually, we show that these basins are half-planes or circles, depending on the multiplicities of the roots. We conclude our study with a graphical gallery that allow us to compare the basins of attraction of Newton’s and Schröder’s method applied to some given polynomials.


Author(s):  
Janak Raj Sharma ◽  
Sunil Kumar ◽  
Ioannis K. Argyros

In this paper, a class of efficient iterative methods with increasing order of convergence for solving systems of nonlinear equations is developed and analyzed. The methodology uses well-known third-order Potra–Pták iteration in the first step and Newton-like iterations in the subsequent steps. Novelty of the methods is the increase in convergence order by an amount three per step at the cost of only one additional function evaluation. In addition, the algorithm uses a single inverse operator in each iteration, which makes it computationally more efficient and attractive. Local convergence is studied in the more general setting of a Banach space under suitable assumptions. Theoretical results of convergence and computational efficiency are verified through numerical experimentation. Comparison of numerical results indicates that the developed algorithms outperform the other similar algorithms available in the literature, particularly when applied to solve the large systems of equations. The basins of attraction of some of the existing methods along with the proposed method are given to exhibit their performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Jiří Petržela ◽  
Tomas Gotthans ◽  
Milan Guzan

This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.


Sign in / Sign up

Export Citation Format

Share Document