scholarly journals Comparative Analysis between Biogas Flow in Landfill and Electrical Resistivity Tomography in Rio Claro City, Brazil

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
César Moreira ◽  
Marcus Castro ◽  
Ana Gonsalez ◽  
Fernanda Cavallari ◽  
Thais Munhoz ◽  
...  

The biogas originated from anaerobic degradation of organic matter in landfills consists basically in CH4, CO2, and H2O. The landfills represent an important depository of organic matter with high energetic potential in Brazil, although with inexpressive use in the present. The estimation of production of the productive rate of biogas represents one of the major difficulties of technical order to the planning of capture system for rational consumption of this resource. The applied geophysics consists in a set of methods and techniques with wide use in environmental and hydrogeological studies. The DC resistivity method is largely applied in environmental diagnosis of the contamination in soil and groundwater, due to the contrast of electrical properties frequent between contaminated areas and the natural environment. This paper aims to evaluate eventual relationships between biogas flows quantified in drains located in the landfill, with characteristic patterns of electrical resistivity in depth. The drain of higher flow (117 m3/h) in depth was characterized for values between 8000 Ω·m and 100.000 Ω·m, in contrast with values below 2000 Ω·m, which characterize in subsurface the drain with less flow (37 m3/h), besides intermediary flow and electrical resistivity values, attributed to the predominance of areas with accumulation or generation of biogas.

2017 ◽  
Vol 43 (4) ◽  
pp. 1962
Author(s):  
G. Vargemezis ◽  
P. Tsourlos ◽  
I. Mertzanides

The most common geophysical method widely used in hydrogeological surveys concerning deep investigations (150-300m of depth) is the resistivity method and particularly the Vertical Electric Sounding (VES) using the Schlumberger array. VES interpretations assume 1D geoelectrical structure yet it is obvious that such an interpretation assumption is not valid in many cases where 2D and 3D geological features exist. In such cases the application of geoelectrical techniques which can provide both vertical and lateral information concerning the resistivity variations is required. Techniques such as the electrical resistivity tomography, mostly used for the 2D and 3D geoelectrical mapping of near surface applications can be adapted to be used for larger investigation depths provided that modified equipment (viz. cables) is used. In the present paper, the application of deep electrical resistivity tomography (ERT) techniques is applied. ERT array of 21 electrodes, at a distance of 50 meters between them (total length 1000 meters) has been used in several studied areas located in the prefecture of Kavala (North Greece). In several cases near surface structure has been compared with VLF data. The aim of the survey was to study in detail the geological-hydrogeological structure the area of interest in order to suggest the best location for the construction of hydrowells with the most promising results. The 2D images of the geological structure down to the depth of at least 200 meters allowed the better understanding of the behaviour of layered geological formations, since in several cases resistivity values have been calibrated with data from pre-existing boreholes.


Author(s):  
Syazwan Aiman Sufiyanussuari ◽  
◽  
Saiful Azhar Ahmad Tajudin ◽  
Mohammad Izzat Shaffiq Azmi ◽  
Muhammad Nur Hidayat Zahari ◽  
...  

Geophysical electrical resistivity method has been one of the more popular non-destructive method to explore the subsurface. Geophysical electrical resistivity tomography (ERT) subsurface profiling was conducted to map the groundwater path along the embankment. The groundwater path able to decrease the slope stability, thus its need to locate the position for conduct the slope remediation via subsoil drainage. In this study, Terrameter LS2 model, electrodes, cables, battery, and cable connectors were the equipment used for measurement. This study uses cable spread line at 200m with 2.5m spacing between electrodes by using gradient protocol. The resistivity data was analyzed using RES2DINV software. The interpretation of groundwater path is based on the resistivity values less than 100 ohm.m, which is interpreted as saturated materials. This study demonstrates the efficiency of application of electrical resistivity tomography (ERT) in detecting the groundwater pathways. This investigation will help in sustaining the slope stability via indicating the position of groundwater pathways, and thus implementing the slope remediation work.


2018 ◽  
Vol 19 (1) ◽  
pp. 24-34
Author(s):  
Budy Santoso

Bungaya Kangin Village, Bebandem District, Karangasem Regency, Bali Province consists of paddy fields and settlements, required therefore a water source / aquifer  that can meet all these needs. One of the Geophysical Methods that can identify the aquifer is the Geoelectric Method. Geoelectric method used in this research is Resistivity Method. Data acquisition using Vertical Electrical Sounding (VES) and Electrical Resistivity Tomography (ERT) Methods. VES method is a method of measurement to determine the variation of resistivity vertically at one point. Electrical Resistivity Tomography (ERT) method is a method of measuring resistivity on soil surface / rock by using many electrode (51 electrode), to obtain sub-surface resistivity variation  lateraly and verticaly, to obtain sub-surface image. The equipment used for geoelectric measurements is  Resistivity Meter of Naniura NRD 300 Hf which has been equipped with a switchbox to adjust the displacement of 51 electrodes. Based on the resistivity modeling results, the aquifers in the study area were found in rough sandstones with resistivity values : (49 - 100) Ohm.m.  


2021 ◽  
Vol 5 (2) ◽  
pp. 635-639
Author(s):  
Y. S. Onifade ◽  
V. B. Olaseni ◽  
I. G. Baoku ◽  
C. Eravwodoke

Geophysical investigation using the 2D Electrical Resistivity Tomography (ERT) was carried out to assess the subsurface of Ugoneki and its environs in order to investigate for minerals. A total of six (6) traverses, 200 m long each, three (3) transverse lines were in the North-South direction and the other three (3) traverses in the West-East direction using the Wenner electrode configuration. 2D Wenner resistivity data were acquired along each traverse. The data were inverted to reveal a spatially continuous resistivity distribution in 2D within the study area. The 2D results reveal a depth of 39.6 m across each traverse. Resistivity values vary from 87.1 – 3423 Ωm in the entire study area. From the standard resistivity table, the following solid and non-metallic type of minerals can be delineated in the study area which is representative of sandy clay, lateritic clay sand, sandstone and limestone with resistivity values that range from 87.1 – 89.9 Ωm, 1201 – 1462 Ωm, 2069 – 3423 Ωm, and 2069 – 3423 Ωm respectively. The implication of this research is to know the type and the particular location where these non-metallic solid minerals are located in the subsurface for future exploration. The results of resistivity values are compared with those in the literature and are found to be in good agreement. In order to quantify these minerals, it is also recommended to use higher dimension (3D) of resistivity method (ERT) in the study area.


2021 ◽  
Vol 54 (2E) ◽  
pp. 122-133
Author(s):  
Raad Eissa

Maintenance of existing structures and development or reuse of brownfield sites need to determine buried foundations, in terms of location and dimensions, as accurately as possible. Geophysical methods provide an indirect way to look in the ground and provide information about the subsurface that the traditional methods might be unable to. In particular, the electrical resistivity method has been performed in the context of buried foundation surveys. This review spots the light on the main results obtained from utilizing the electrical resistivity method and the most affecting parameters that can influence the obtained resistivity models, and also, focuses on published case studies to merge their findings to understand the interaction among the method, the foundation and the hosting background for buried foundations surveys. The case studies mentioned in this review show the resistivity method's success and highlight the most important parameters that can control the method’s applicability and data interpretation. The integration of the geophysical-traditional methods has appreciable potential for more accurate findings.


Sign in / Sign up

Export Citation Format

Share Document