scholarly journals Preparation and In Vitro Evaluation of Ethylcellulose and Polymethacrylate Resins Loaded Microparticles Containing Hydrophilic Drug

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Satish Pandav ◽  
Jitendra Naik

Objective. The purpose of the recent study was to prepare and estimate sustained release of Ethylcellulose (300 cps) and Eudragit (RS 100 and RL 100) microparticles containing Propranolol hydrochloride used as a treatment of cardiovascular system, especially hypertension. Method. Propranolol hydrochloride was microencapsulated with different polymers (Ethylcellulose, Eudragit RS, and Eudragit RL) using modified hydrophobic (O/O) solvent evaporation method using 1 : 1 combination of acetone and isopropanol as the internal phase. Obtained microparticles were showing higher batch yield with higher encapsulation efficiency. Microparticles were prepared with different ratios of 1 : 1, 1 : 3, 1 : 5, and 1 : 7 (%, wt/wt) using span 80 (%, v/v) as a surfactant. Results. The influence of formulation factors like drug: polymer ratio, internal phase, and type of polymers on obtained microparticles was characterized with respect to particle size distribution, encapsulation efficiency, percentage yield, FTIR, and FE-SEM. Higher encapsulation efficiencies were obtained with various polymers like Ethylcellulose (96.63 ± 0.5) compared to Eudragit RS 100 (83.70 ± 0.6) and RL 100 (89.62 ± 0.6). The in vitro release study was characterized by initial burst. Conclusion. The result of study displays that Ethylcellulose and Eudragit loaded microparticles of Propranolol hydrochloride can be effectively prepared using modified hydrophobic emulsification solvent evaporation technique. Therefore, the modified hydrophobic emulsion technique can also be applied to the preparation of microparticles for low molecular weight and highly water soluble drugs.

Author(s):  
Bhikshapathi D.v.r.n.

Objective The main objective of the present study is systematic development of solid dispersions of Candesartan cilexetil by solvent evaporation method to enhance the solubility and bioavailability. Methods In the present study, eighteen formulations of solid dispersions were prepared with 1:1 and 1:3 ratios of drug: carrier and with and without surfactant. There was significant improvement in the rate of drug release from all 20 solid dispersions and the formulation (SD16) comprising Candesartan: containing Soluplus (1:3 ratio of drug:  Soluplus with 2% SLS as surfactant) by solvent evaporation process. Results Final optimized design SD16 contained maximum drug content of 99.08%. In in vitro dissolution studies it shows greater dissolution rate i.e. 99.7±4.2% associated through additional designs and pure drug. The drug was compatible with all the excipients as per FTIR (Fourier transform infrared spectroscopy). From powder X-ray diffraction (p-XRD) and by (SEM) studies it was evident that crystalline form of Candesartan has been converted into amorphous form within solid dispersion design.  Conclusion From these studies we can accomplish solid dispersions are one of the greatest favorable formulation for Candesartan cilexetil for enhancing the solubility and bioavailability of poorly water soluble drugs in the effective group of hypertension and other cardiac problems.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Shivarani Eesam ◽  
Jaswanth S. Bhandaru ◽  
Chandana Naliganti ◽  
Ravi Kumar Bobbala ◽  
Raghuram Rao Akkinepally

Abstract Background Increasing hydrophilicity of poorly water-soluble drugs is a major challenge in drug discovery and development. Cocrystallization is one of the techniques to enhance the hydrophilicity of such drugs. Carvedilol (CAR), a nonselective beta/alpha1 blocker, used in the treatment of mild to moderate congestive heart failure and hypertension, is classified under BCS class II with poor aqueous solubility and high permeability. Present work is an attempt to improve the solubility of CAR by preparing cocrystals using hydrochlorothiazide (HCT), a diuretic drug, as coformer. CAR-HCT (2:0.5) cocrystals were prepared by slurry conversion method and were characterized by DSC, PXRD, FTIR, Raman, and SEM analysis. The solubility, stability, and dissolution (in vitro) studies were conducted for the cocrystals. Results The formation of CAR-HCT cocrystals was confirmed based on melting point, DSC thermograms, PXRD data, FTIR and Raman spectra, and finally by SEM micrographs. The solubility of the prepared cocrystals was significantly enhanced (7.3 times), and the dissolution (in vitro) was improved by 2.7 times as compared to pure drug CAR. Further, these cocrystals were also found to be stable for 3 months (90 days). Conclusion It may be inferred that the drug–drug (CAR-HCT) cocrystallization enhances the solubility and dissolution rate of carvedilol significantly. Further, by combining HCT as coformer could well be beneficial pharmacologically too.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (06) ◽  
pp. 13-19
Author(s):  
R. O Sonawane ◽  
◽  
S. Nayak ◽  
M. D. Chaudhari ◽  
V. V. Pande

The poorly water soluble drugs tend to have low bioavailability and this can be improved by several methods. Solid dispersion is a promising formulation approach to improve solubility and dissolution and ultimately oral bioavailability of these drugs. The aim of this study was to prepare and characterize solid dispersion of anti-diabetic glimepiride, a BCS class II drug, with the hydrophilic carrier PVP K30 by solvent evaporation and microwave induced fusion methods. Scanning electron microscopy (SEM), X–ray powder diffractometry (XRD) and differential scanning calorimetric (DSC) were used to evaluate the physical state of the drug. The solid dispersions were also evaluated for drug content, solubility and dissolution studies. Solid dispersions prepared by solvent evaporation method were showed maximum enhancement of solubility and dissolution in comparison to that prepared by other method.


Author(s):  
Leena Jacob ◽  
Abhilash Tv ◽  
Shajan Abraham

Objective: The study was carried out with an objective to achieve a potential sustained release oral drug delivery system of an antihypertensive drug, Perindopril which is a ACE inhibitor having half life of 2 hours. Perindopril is water soluble drug, so we can control or delay the release rate of drug by using release retarding polymers. This may also decrease the toxic side effects by preventing the high initial concentration in the blood.Method: Microcapsules were prepared by solvent evaporation technique using Eudragit L100 and Ethyl cellulose as a retarding agent to control the release rate and magnesium stearate as an inert dispersing carrier to decrease the interfacial tension between lipophilic and hydrophilic phase. Results: Prepared microcapsules were evaluated for the particle size, percentage yield, drug entrapment efficiency, flow property and in vitro drug release for 12 h. Results indicated that the percentage yield, mean particle size, drug entrapment efficiency and the micrometric properties of the microcapsules was influenced by various drug: polymer ratio. The release rate of microcapsules could be controlled as desired by adjusting the combination ratio of dispersing agents to retarding agents.Conclusion:Perindopril microcapsules can be successfully designed to develop sustained drug delivery, that reduces the dosing frequency and their by one can increase the patient compliance.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1047
Author(s):  
Walid Anwar ◽  
Hamdy Dawaba ◽  
Mohsen Afouna ◽  
Ahmed Samy ◽  
Mohammed Rashed ◽  
...  

Candesartan Cilexetil (CC) is a prodrug widely used in the treatment of hypertension and heart failure, but it has some limitations, such as very poor aqueous solubility, high affinity to P-glycoprotein efflux mechanism, and hepatic first-pass metabolism. Therefore, it has very low oral bioavailability. In this study, glyceryl monostearate (GMS) and Capryol™ 90 were selected as solid and liquid lipids, respectively, to develop CC-NLC (nanostructured lipid carrier). CC was successfully encapsulated into NLP (CC-NLC) to enhance its oral bioavailability. CC-NLC was formulated using a hot homogenization-ultrasonication technique, and the physicochemical properties were characterized. The developed CC-NLC formulation was showed in nanometric size (121.6 ± 6.2 nm) with high encapsulation efficiency (96.23 ± 3.14%). Furthermore, it appeared almost spherical in morphology under a transmission electron microscope. The surgical experiment of the designed CC-NLC for absorption from the gastrointestinal tract revealed that CC-NLC absorption in the stomach was only 15.26% of that in the intestine. Otherwise, cellular uptake study exhibit that CC-NLCs should be internalized through the enterocytes after that transported through the systemic circulation. The pharmacokinetic results indicated that the oral bioavailability of CC was remarkably improved above 2-fold after encapsulation into nanostructured lipid carriers. These results ensured that nanostructured lipid carriers have a highly beneficial effect on improving the oral bioavailability of poorly water-soluble drugs, such as CC.


2004 ◽  
Vol 23 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Janne Ørskov Christensen ◽  
Kirsten Schultz ◽  
Birgitte Mollgaard ◽  
Henning Gjelstrup Kristensen ◽  
Anette Mullertz

2021 ◽  
Vol 22 (7) ◽  
Author(s):  
Karim S. Shalaby ◽  
Muhammad I. Ismail ◽  
Alf Lamprecht

AbstractCyclodextrin (CD) complexes are frequently used for enhancing the solubility or absorption of poorly water-soluble drugs. On the contrary, little is known about their complex formation with water-soluble drugs. Here, we have studied the interaction between 2-hydroxypropyl β-CD (HPβCD) and three water-soluble drugs, namely naloxone (NX), oxycodone (OC), and tramadol (TR), by isothermal titration calorimetry (ITC) combined with molecular modeling in view of the potential impact on drug release. The results showed that the complex formation of HPβCD with all three drugs occurs spontaneously. The complexes formed with NX and OC were found to be 2NX:1HPβCD and 3OC:2HPβCD, respectively. TR was found to form 2 complexes with HPβCD; of 1:2 and 1:1 complexation ratios. The binding of HPβCD to NX was greater than to OC due to the higher hydrophobicity of the structure of the former. Moreover, the binding affinity of HPβCD to TR was higher than to OC, which indicated the effect of the higher flexibility of the guest in increasing the binding affinity. In vitro drug release experiments from the various complexes revealed a significant impact of the stoichiometry of the complex on the release profiles. Accordingly, the co-administration of cyclodextrins with water-soluble drugs should be closely monitored, as it may result in unintentional complex formation that can potentially impact the drugs’ gastrointestinal absorption.


2019 ◽  
Vol 9 (3) ◽  
pp. 212-221 ◽  
Author(s):  
Aparna Bhalerao ◽  
Pankaj Prakash Chaudhari

Cilinidipine is a fourth generation N and L-type calcium channel antagonists used alone or in combination with another drug to treat hypertension. Cilnidipine is poorly water -soluble, BCS class II drug with 6 to 30 percent oral bioavailability due to first pass metabolism. So to protect the drug from degradation and improve its dissolution, solid lipid nanoparticles were prepared. Glyceryl monostearate was selected as lipid while span 20: tween 20 were selected as surfactant blends. The formulations were evaluated for various parameters, as percent transmittance, drug content, percent encapsulation efficiency; percent drug loading, In vitro drug release and particle size. Optimized formulation was lyophilized using lactose as a cryo-protectant. The lyophilized formulation was evaluated for micromeritic properties, particle size and in vitro dissolution. It was further evaluated for DSC, XRD, and SEM. Percent encapsulation efficiency and percent drug loading of optimized formulation (F3) were 78.66percent and 9.44percent respectively. The particle size of F3 formulation without drug was 204 nm and with the drug was 214 nm. The particle size of the reconstituted SLN was 219 nm. In DSC study, no obvious peaks for cilnidipine were found in the SLN of cilnidipine indicated that the cilnidipine must be present in a molecularly dissolved state in SLN. In X-ray diffractometry absence of peaks representing crystals of cilnidipine in SLN indicated that the drug was in an amorphous or disordered crystalline phase in the lipid matrix. Thus, solid lipid nanoparticle formulation is a promising way to enhance the dissolution rate of cilnidipine. Keywords: Cilnidipine, Solid Lipid Nanoparticle, Hypertension


Sign in / Sign up

Export Citation Format

Share Document