scholarly journals Biosynthesis and Characterization of Gold and Silver Nanoparticles Using Milk Thistle (Silybum marianum) Seed Extract

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
R. Gopalakrishnan ◽  
K. Raghu

Biogenic synthesis of gold and silver nanoparticles from aqueous solutions using milk thistle (Silybum marianum) seed extract as reducing and stabilizing agent has been reported. Formation and stabilization of nanoparticles were monitored using surface plasmon resonance (SPR) bands of UV-Vis spectroscopy. Morphology of gold and silver nanoparticles was investigated using X-ray diffraction, high-resolution transmission electron microscopy with selected area electron diffraction analysis, and dynamic light scattering. Fourier transform-infrared spectroscopy was employed to identify the possible biomolecules responsible for the reduction and stabilization of nanoparticles.

2014 ◽  
Vol 2 (4) ◽  
pp. 510-515
Author(s):  
Hala Moustafa Ahmed

The present study mainly focuses of combined action of Nepali hog plum as well as citrate synthesized silver nanoparticles (AgNPs) and Amikacin, as an antibiotic. The synergistic actions of citrate stabilized silver nanoparticles (AgNPs with chem) were compared with that of Nepali hog plum Choerospondia saxillaris (Lapsi) synthesized silver nanoparticles (AgNPs with plant), together with action of antibiotic onselected bacterial strains of Salmonella typhi. The synthesized AgNPs were characterized through UV-Vis spectroscopy, Transmission electronmicroscopy and X-ray diffraction technique. The size of the synthesized silver nanoparticles was measured by Transmission Electron Microscope (TEM) and X-ray diffraction (XRD).DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11127 Int J Appl Sci Biotechnol, Vol. 2(4): 510-515 


2012 ◽  
Vol 512-515 ◽  
pp. 2019-2022 ◽  
Author(s):  
Xiao Lu Liang ◽  
Xian Hua Wei

Cu2FeSnS4semiconductor nanocrystals with zincblende structure have been successfully synthesized by a hot-injection approach. Cu+, Fe2+, and Sn4+cations have a random distribution in the zincblende unit cell, and the occupancy possibilities are 1/2, 1/4 and 1/4, respectively. Those nanocrystals were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectroscopy (EDS), and UV-Vis-NIR absorption spectroscopy. The Cu2FeSnS4 nanocrystals have an average size of 7.5 nm and a band gap of 0.92 eV.


2017 ◽  
Vol 263 ◽  
pp. 165-169
Author(s):  
Silvia Chowdhury ◽  
Faridah Yusof ◽  
Nadzril Sulaiman ◽  
Mohammad Omer Faruck

In this article, we have studied the process of silver nanoparticles (AgNPs) aggregation and to stop aggregation 0.3% Polyvinylpyrrolidone (PVP) was used. Aggregation study carried out via UV-vis spectroscopy and it is reported that the absorption spectrum of spherical silver nanoparticles were found a maximum peak at 420 nm wavelength. Furthermore, Transmission Electron Microscopy (TEM) were used to characterized the size and shape of AgNPs, where the average particle size is around 10 to 25 nm in diameter and the AgNPs shape is spherical. Next, Dynamic Light Scattering (DLS) were used, owing to observed size distribution and self-correlation of AgNPs.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
C. Massard ◽  
S. Pairis ◽  
V. Raspal ◽  
Y. Sibaud ◽  
K. O. Awitor

The feasibility of surface nanopatterning with TiO2nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO) template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM). The TiO2nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM) with selected area electron diffraction (SAED) were used to investigate the TiO2structure. The optical properties were studied using UV-Vis spectroscopy.


NANO ◽  
2016 ◽  
Vol 11 (03) ◽  
pp. 1650034
Author(s):  
Xinliang Zheng ◽  
Juan Feng ◽  
Jiarui Zhang ◽  
Hongna Xing ◽  
Jiming Zheng ◽  
...  

High-quality neodymium oxychlorides nanocrystals with cubic shape were synthesized by a nonhydrolytic thermolysis route. The morphology and crystal structure of the neodymium oxychlorides nanocubes were characterized by transmission electron microscopy at the nanoscale. Transmission electron microscope (TEM) image shows that the neodymium oxychlorides nanocrystals are nearly monodispersed with cube-like shape. X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns of numerous neodymium oxychlorides nanocubes suggest a pure crystal phase with tetragonal PbFCl matlockite structure. HRTEM image of individual neodymium oxychlorides nanocubes indicate that each nanocubes have a single-crystalline nature with high quality. Unlike the anti-ferromagnetism of the bulk, the neodymium oxychlorides nanocubes show clearly anomalous ferromagnetic characteristic at room temperature. This finding provides a new platform for the exploration of diluted magnetic semiconductors, rare earth-based nanomaterials and so on.


2009 ◽  
Vol 79-82 ◽  
pp. 581-584 ◽  
Author(s):  
Li Ang Song ◽  
Li Xin Cao ◽  
Ge Su ◽  
Wei Liu ◽  
Hui Liu ◽  
...  

Titanium based nanotubes (8-12nm outer diameter and 4-6nm inner diameter) were successfully fabricated by a simple and cost-effective hydrothermal method. The nanotube-like amorphous phases TNT(Na) and TNT(H) were obtained with different post treatment. The samples were characterized by means of high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), selected area electron diffraction (SAED), energy dispersive X-ray spectrum (EDS) and UV-Vis diffuse reflectance spectroscopy (DRS). The photocatalytic activities of the nanotubes were evaluated using photo-oxidation of methyl orange.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Wenqing Qin ◽  
Congren Yang ◽  
Ran Yi ◽  
Guanhua Gao

Single-crystalline - nanocubes were successfully obtained in large quantities through a facile one-step hydrothermal synthetic route under mild conditions. In this synthetic system, aqueous iron (III) nitrate () served as iron source and triethylamine served as precipitant and alkaline agent. By prolonging reaction time from 1 h to 24 h, the evolution process of -, from nanorhombohedra to nanohexahedron, and finally nanocube, was observed. The products were characterized by Powder X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), High-resolution Transmission Electron Microscopy (HRTEM), Selected-Area Electron Diffraction (SAED), and Fourier Transform Infrared Spectrometry (FTIR). The possible formation mechanism was discussed on basis of the experimental results.


2011 ◽  
Vol 233-235 ◽  
pp. 1954-1957
Author(s):  
Xiao Yan Yan ◽  
Zhi Qiang Wei ◽  
Li Gang Liu ◽  
Xiao Juan Wu ◽  
Ge Zhang

Helical structure ZnS were successfully prepared via solvothermal method by the reaction of zinc acetate and sodium sulphide. The composition, morphology, and microstructure of the sample were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), the corresponding selected area electron diffraction (SAED) and X-ray energy spectrum (EDS). The experiment results show that the sample is 1-D hexagonal crystal ZnS and grows along the [002] direction, and is helical structure, with lengths in the range of 100-200 nm, the diameter about 5-15 nm, and pitch about 20nm.


2012 ◽  
Vol 622-623 ◽  
pp. 893-896
Author(s):  
H.R. Ebrahimi ◽  
M. Eslami

The bioceramics, calcium hydroxyapatite (HA), is a material which is biocompatible to the human body and is well suited to be used in hyperthermia applications for the treatment of bone cancer. We synthesis hydroxyapatite in modified synthetic body fluid (SBF) solutions at 37°C and pH of 7.4 using a novel chemical precipitation technique. Then after heat operation, on filtered precipitated result HA were produced. For loading the silver nanoparticles (Ag NPs) on the hydroxyapatite we use AgNO3 solution. And for reducing Ag+ ions apply sodium borohydrate solution. The formations of the silver nanoparticles on the HAP structure were confirmed by X-ray diffraction, transmission electron microscopy (TEM). TEM image show the nanostructure of silver particles, being formed on hydroxyapatite texture.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 212
Author(s):  
Hemmat M. Abd-Elhady ◽  
Mona A. Ashor ◽  
Abdelkader Hazem ◽  
Fayez M. Saleh ◽  
Samy Selim ◽  
...  

The ability of microorganisms to reduce inorganic metals has launched an exciting eco-friendly approach towards developing green nanotechnology. Thus, the synthesis of metal nanoparticles through a biological approach is an important aspect of current nanotechnology. In this study, Streptomyces aizuneusis ATCC 14921 gave the small particle of silver nanoparticles (AgNPs) a size of 38.45 nm, with 1.342 optical density. AgNPs produced by Streptomyces aizuneusis were characterized by means of UV-VIS spectroscopy and transmission electron microscopy (TEM). The UV-Vis spectrum of the aqueous solution containing silver ion showed a peak between 410 to 430. Moreover, the majority of nanoparticles were found to be a spherical shape with variables between 11 to 42 nm, as seen under TEM. The purity of extracted AgNPs was investigated by energy dispersive X-ray analysis (EDXA), and the identification of the possible biomolecules responsible for the reduction of Ag+ ions by the cell filtrate was carried out by Fourier Transform Infrared spectrum (FTIR). High antimicrobial activities were observed by AgNPs at a low concentration of 0.01 ppm, however, no deleterious effect of AgNPs was observed on the development and occurrence of Drosophila melanogaster phenotype. The highest reduction in the viability of the human lung carcinoma and normal cells was attained at 0.2 AgNPs ppm.


Sign in / Sign up

Export Citation Format

Share Document