scholarly journals Computational Dynamics of Arterial Blood Flow in the Presence of Magnetic Field and Thermal Radiation Therapy

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
T. Chinyoka ◽  
O. D. Makinde

We conduct a numerical study to determine the influence of magnetic field and thermal radiation on both velocity and temperature distributions in a single blood vessel. The model here assumes that blood is a Newtonian incompressible conducting fluid with radially varying viscosity due to hematocrit variation. The transient equations of momentum and energy transport governing the flow in an axisymmetric configuration are solved numerically using a semi-implicit finite difference method. Results are presented graphically and discussed both qualitatively and quantitatively from the physiological point of view. The results of this work may enhance current understanding of the factors that determine the effects of hyperthermia treatment on tumor tissues.

1983 ◽  
Vol 102 ◽  
pp. 67-71
Author(s):  
W. Deinzer ◽  
G. Hensler ◽  
D. Schmitt ◽  
M. Schüssler ◽  
E. Weisshaar

We give a short summary of some results of a numerical study of magnetic field concentrations in the solar photosphere and upper convection zone. We have developed a 2D time dependent code for the full MHD equations (momentum equation, equation of continuity, induction equation for infinite conductivity and energy equation) in slab geometry for a compressible medium. A Finite-Element-technique is used. Convective energy transport is described by the mixing-length formalism while the diffusion approximation is employed for radiation. We parametrize the inhibition of convective heat flow by the magnetic field and calculate the material functions (opacity, adiabatic temperature gradient, specific heat) self-consistently. Here we present a nearly static flux tube model with a magnetic flux of ∼ 1018 mx, a depth of 1000 km and a photospheric diameter of ∼ 300 km as the result of a dynamical calculation. The influx of heat within the flux tube at the bottom of the layer is reduced to 0.2 of the normal value. The mass distribution is a linear function of the flux function A: dm(A)/dA = const. Fig. 1 shows the model: Isodensities (a), fieldlines (b), isotherms (c) and lines of constant continuum optical depth (d) are given. The “Wilson depression” (height difference between τ = 1 within and outside the tube) is ∼ 150 km and the maximum horizontal temperature deficit is ∼ 3000 K. Field strengths as function of x for three different depths and as function of depth along the symmetry axis are shown in (e) and (f), respectively. Note the sharp edge of the tube.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Abdul Quayam Khan ◽  
Amer Rasheed

In this paper we have studied the magnetohydrodynamic (MHD) mixed convection Maxwell flow of an incompressible nanofluid with magnetic field and heat transfer over a moving plate aligned horizontally. Thermal radiation has also been applied in order to investigate its effects on velocity and temperature variations in the fluid. The Caputo time derivative has been employed to derive the mathematical model. A numerical solution has been obtained using finite difference discretization along with L1-algorithm. Fractional and other pertinent physical fluid parameters like magnetic field parameter, thermal radiation, effect on velocity, and temperature distribution are analyzed and demonstrated through graphs.


Author(s):  
Bandaru Mallikarjuna ◽  
Srinivas Jangili ◽  
G. Gopi Krishna ◽  
O. A. Beg ◽  
Ali Kadir

Abstract Electromagnetic high-temperature therapy is popular in medical engineering treatments for various diseases include tissue damage ablation repair, hyperthermia and oncological illness diagnosis. The simulation of transport phenomena in such applications requires multi-physical models featuring magnetohydrodynamics, biorheology, heat transfer and deformable porous media. Motivated by investigating the fluid dynamics and thermodynamic optimization of such processes, in the present article a mathematical model is developed to study the combined influence of thermal buoyancy, magnetic field and thermal radiation on the fluid and heat characteristics in electrically-conducting viscoelastic biofluid flow through a vertical deformable porous medium. Jefferys elastic-viscous model is deployed to simulate non-Newtonian characteristics of the biofluid. It is assumed that heat is generated within the fluid by both viscous and Darcy (porous matrix) dissipations. The boundary value problem is normalized with appropriate transformations. The non-dimensional biofluid velocity, solid displacement and temperature equations with appropriate boundary conditions are solved computationally using a spectral method. Verification of accuracy is conducted via monitoring residuals of the solutions and Validated with shooting technique is included. The effects of Jeffrey viscoelastic parameter, viscous drag parameter, magnetic field parameter, radiation parameter and buoyancy parameter on flow velocity, solid displacement, temperature and entropy generation are depicted graphically and interpreted at length. Increasing magnetic field and drag parameters are found to reduce the field velocity, solid displacement, temperature and entropy production. Higher magnitudes of thermal radiation parameter retard the flow and decrease Nusselt number whereas they elevate solid displacement.


2021 ◽  
Vol 51 (4) ◽  
pp. 229-239
Author(s):  
Sameh E. Ahmed ◽  
R.A Mohamed ◽  
A.M Ali ◽  
A.J Chamkha ◽  
M.S Soliman

This article presents a numerical study for a magnetohydrodynamic flow of a non-Newtonian Casson nanofluid over a stretching sheet embedded in a porous medium under the impacts of non-linear thermal radiation, heat generation/absorption, Joule heating and slips boundary conditions. A two-phase nanofluid model is applied to represent the nanofluid mixture. The porous medium is represented via the Darcy model. A similar solution is obtained for the governing equations and a numerical treatment based on the Runge-Kutta method is conducted to the resulting system of equations.  In this study, the controlling physical parameters are the Casson fluid parameter , the magnetic field , the radiation parameter , the Brownian motion parameter  and the thermophoresis parameter . The obtained results reveal that an increase in the Casson parameter enhances both of the local Nusselt and the Sherwood number while they are reduced as the non-linear radiation parameter increases. In addition, an increase in the magnetic field parameter supports the skin friction coefficient regardless the value of the Casson parameter.


2019 ◽  
Vol 30 (11) ◽  
pp. 1950080 ◽  
Author(s):  
M. M. Khader

The method introduced in this paper is based on the finite element method. As an application for this efficient numerical method, we employ it in solving the system of ordinary differential equations which describes the thin-film flow and heat transfer with the effect of thermal radiation, magnetic field and slip velocity. The effect of the parameters which govern the proposed problem is discussed. From this theoretical and numerical study, it is observed that the slip velocity parameter tends to decrease the fluid velocity, whereas both the magnetic parameter and the radiation parameter can enhance the temperature distribution.


Sign in / Sign up

Export Citation Format

Share Document