scholarly journals Prediction of Slot Shape and Slot Size for Improving the Performance of Microstrip Antennas Using Knowledge-Based Neural Networks

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Taimoor Khan ◽  
Asok De

In the last decade, artificial neural networks have become very popular techniques for computing different performance parameters of microstrip antennas. The proposed work illustrates a knowledge-based neural networks model for predicting the appropriate shape and accurate size of the slot introduced on the radiating patch for achieving desired level of resonance, gain, directivity, antenna efficiency, and radiation efficiency for dual-frequency operation. By incorporating prior knowledge in neural model, the number of required training patterns is drastically reduced. Further, the neural model incorporated with prior knowledge can be used for predicting response in extrapolation region beyond the training patterns region. For validation, a prototype is also fabricated and its performance parameters are measured. A very good agreement is attained between measured, simulated, and predicted results.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Taimoor Khan ◽  
Asok De

Over the past decade, artificial neural networks have emerged as fast computational medium for predicting different performance parameters of microstrip antennas due to their learning and generalization features. This paper illustrates a neural network model for instantly predicting the resonance frequencies, gains, directivities, antenna efficiencies, and radiation efficiencies for dual-frequency operation of slotted microstrip antennas with air-gap. The proposed neural model is valid for any arbitrary slot-dimensions and inserted air-gap within their specified ranges. A prototype is fabricated using Roger’s substrate and its performance is measured for validation. A very good agreement is achieved in simulated, predicted, and measured results.


2016 ◽  
Vol 9 (5) ◽  
pp. 1169-1177 ◽  
Author(s):  
Chandan Roy ◽  
Taimoor Khan ◽  
Binod Kumar Kanaujia

Artificial neural networks (ANNs) have acquired enormous importance in computing of the performance parameters of microstrip antennas due to their generalized and adaptive features. However, recently the concept of support vector machines (SVMs) has become very much popular in performance parameters computation due to several attractive features over ANNs. Specifically, SVMs outreach ANNs noticeably in terms of execution time. Likewise, ANNs are having multiple local minima problem, whereas a global and unique solution is provided by SVMs. In this paper, several performance parameters like: resonant frequency, gain, directivity, and radiation efficiency of slotted microstrip antennas with modified ground plane are computed with the help of SVM formulation. Comparisons of different parameters of simulated and computed values are illustrated. The achieved radiation patterns at particular resonant frequency in different planes are included as well. A prototype of the optimized antenna is also fabricated and characterized. A good agreement is attained among the computed, simulated, and measured results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Taimoor Khan ◽  
Asok De

In the last one decade, neural networks-based modeling has been used for computing different performance parameters of microstrip antennas because of learning and generalization features. Most of the created neural models are based on software simulation. As the neural networks show massive parallelism inherently, a parallel hardware needs to be created for creating faster computing machine by taking the advantages of the parallelism of the neural networks. This paper demonstrates a generalized neural networks model created on field programmable gate array- (FPGA-) based reconfigurable hardware platform for computing different performance parameters of microstrip antennas. Thus, the proposed approach provides a platform for developing low-cost neural network-based FPGA simulators for microwave applications. Also, the results obtained by this approach are in very good agreement with the measured results available in the literature.


Sign in / Sign up

Export Citation Format

Share Document